A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we...A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.展开更多
基金The NNSF (10571026) of Chinathe Specialized Research Fund (20060286006) for the Doctoral Program of Higher Education.
文摘A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.