Let R be an abelian ring. We consider a special subring An, relative to α2,…, αn∈ REnd(R), of the matrix ring Mn(R) over a ring R. It is shown that the ring An is a generalized right PP-ring (right zip ring)...Let R be an abelian ring. We consider a special subring An, relative to α2,…, αn∈ REnd(R), of the matrix ring Mn(R) over a ring R. It is shown that the ring An is a generalized right PP-ring (right zip ring) if and only if the ring R is a generalized right PP-ring (right zip ring). Our results yield more examples of generalized right PP-rings and right ziu rings.展开更多
A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we...A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.展开更多
Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α)....Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.展开更多
In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this no...In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this notion considered in the literature for commutative rings and Ore extensions.展开更多
基金The NSF (10961021) of ChinaTRAPOYT and NWNU-KJCXGC212
文摘Let R be an abelian ring. We consider a special subring An, relative to α2,…, αn∈ REnd(R), of the matrix ring Mn(R) over a ring R. It is shown that the ring An is a generalized right PP-ring (right zip ring) if and only if the ring R is a generalized right PP-ring (right zip ring). Our results yield more examples of generalized right PP-rings and right ziu rings.
基金The NNSF (10571026) of Chinathe Specialized Research Fund (20060286006) for the Doctoral Program of Higher Education.
文摘A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.
文摘Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.
基金Research is supported by Grant HERMES CODE 30366Departamento de Matemati-cas,Facultad de Ciencias,Universidad Nacional de Colombia,Sede Bogota.
文摘In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this notion considered in the literature for commutative rings and Ore extensions.