SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inher...SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.展开更多
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and bot...The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.展开更多
Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. ...Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.展开更多
Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the cr...Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.展开更多
Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the so...Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.展开更多
The LA-ICP-MS U-Pb zircon dating of eight typical samples from four units of the Bozhushan granite intrusion in southeastern Yunnan Province, constrains the age of acidic magmatic intrusion in this area. Both the osci...The LA-ICP-MS U-Pb zircon dating of eight typical samples from four units of the Bozhushan granite intrusion in southeastern Yunnan Province, constrains the age of acidic magmatic intrusion in this area. Both the oscillatory zoning and chondrite-normalized REE patterns characterized by LREE-depletion and HREE-enrichment with positive Ce anomaly and negative Eu anomaly indicate the magmatic genesis of these zircons. Eight zircon samples from the Bozhushan granite yielded a mean 206 Pb/ 238 U age of (85.58±1.0) Ma (MSWD=4.1) to (88.10±0.66) Ma (MSWD=1.8). These chronology data suggest an accurate isotopic age for the intrusion of the Bozhushan granite, and are different from the published age data of 48 to 111.5 Ma. The geochronology data of the Gejiu, Dulong and Dachang super-large deposits and related Yanshanian granites indicated that there occurred large-scale granitic magmatism and mineralization events in western Nanling region during the Late Cretaceous.展开更多
Mesozoic volcanic rocks in the eastern part of the North Dabi e Mountains are rich in Na (Na\-2O=\{4.03%\}, Na\-2O/K\-2O=\{1.31\}), Sr and Ba , and high in Sr/Y ratio but low in Nb, Y and H REE. They have experienced ...Mesozoic volcanic rocks in the eastern part of the North Dabi e Mountains are rich in Na (Na\-2O=\{4.03%\}, Na\-2O/K\-2O=\{1.31\}), Sr and Ba , and high in Sr/Y ratio but low in Nb, Y and H REE. They have experienced strong fractionation of REE \, and are similar to adakite in geochemical characteristics. The U-Pb dating of zircon from the volcanic rocks is Ma, belonging to Early Cretaceous. These rocks are similar to the volcanic rocks of North Huaiyang not only in age and rare-earth element and trace element geochemistry, but also in the formati on temperature and pressure of the minerals. The results indicated that the dela mination of mountain root and underplating of mafic-ultramafic magma had happen ed in the Dabie orogen before Early Cretaceous. Mesozoic magmatism was intense i n the North Dabie Mountains, including the intrusion of mafic-ultramafic magma, uplifting of gneiss dome, explosion of volcanic rocks and intrusion of granitic magma. The Mesozoic volcanic rocks in the eastern part of the North Dabie Mount ains may be one part of the Mesozoic volcano-intrusive complex belt of North Hu aiyang. The existence of Mesozoic volcanic remnant cap means the denudation of t he Dabie orogenic belt was not very strong since Early Cretaceous.展开更多
The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipula...The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.展开更多
Changshagou adakite, an outcrop in the middle segment of the South Altyn Tagh ultra-high pressure metamorphism (UHPM) terrane, contains medium-K cal-alkaline and weakly peraluminous compositions (SiO2 = 66.79% to 6...Changshagou adakite, an outcrop in the middle segment of the South Altyn Tagh ultra-high pressure metamorphism (UHPM) terrane, contains medium-K cal-alkaline and weakly peraluminous compositions (SiO2 = 66.79% to 68.65%, Al2O3 = 17.48% to 18.31%, K20 + Na20 = 6.32% to 6.88%, K2O/Na2O = 0.25 to 0.33, A/CNK = 1.01 to 1.06). This outcrop is also enriched with large ion lithophile elements but with depleted high-field strength elements (HFSE) showing clearly negative Nb, Ta, and Ti anomalies. REE distribution patterns show a positive anomaly of Eu (6Eu = 1.15 to 1.31) and weakly enriched with LREE compared with HREE (LREE/HREE = 1.02 to 4.20). Experimental results and several characteristics, including relatively low Nb/Ta ratios (6.03 to 8.45) and high Sr, Sr/Y, (La/Yb)N and low Y and Yb, which indicate the presence of residual garnet and the absence of plagioclase in the source region, show that adakite may form at a pressure ranging from 1.2 GPa to 1.5 GPa and at a temperature of approximately 900~C. Low Cr, Ni, and Mg# values, trace element patterns, and SiO2- Mg# and SiO2-MgO diagrams indicate that rocks are formed by the partial melting of a thickened lower continental crust. LA-ICP-MS in situ U-Pb dating yields two group ages: 503.1±1.7 Ma (core) and 453.1±3.0 Ma (rim). The Th/U ratios of the core and the rim are 0.11 to 0.40 and 0.03 to 0.07, respectively. Considering the zircon CL image characteristics, Th/U ratios, and previous studies on regional UHPM rocks, adakite formed at 503.1 ± 1.7 Ma and underwent a tectothermal event as a result of the break-off of the Altyn deep subducted continental crust at 453.1 ± 3.0 Ma.展开更多
LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in ...LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in western Liaoning. The results indicate that the youngest age of the rocks in Daohugou of Ningcheng is 158 Ma, and the oldest one is 164 Ma. Synthesized researches indicate that the salamander-bearing beds in Daohugou of Ningcheng, Reshuichang of Lingyuan and Mazhangzi of Jianping were developed in the same period. The Daohugou beds were formed in the geological age of 164-158 Ma of the middle-late Jurassic. Whilst, the Daohugou beds and its corrdative strata should correspond to the Tiaojishan Formation (or Lanqi Formation) of the middle Jurassic in northern Hebei Province and western Liaoning Province, based on the disconformity between the Daohugou beds and its overlaying beds of the Tuchengzi Formation of Late Jurassic and the Jehol Beds of early Cretaceous, and the disconformity between the Daohugou Beds and its underlying Jiulongshan Formation, which is composed of conglomerate, sandstone, shale with coal and thin coal beds.展开更多
This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagi...This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.展开更多
Post-collisional volcanic rocks of Mesozoic age occur in the regions adjacent to Gerze, part of the southern Qiangtang Terrane of northern Tibet, China. Geochronological, geochemical, and wholerock Sr-Nd isotopic anal...Post-collisional volcanic rocks of Mesozoic age occur in the regions adjacent to Gerze, part of the southern Qiangtang Terrane of northern Tibet, China. Geochronological, geochemical, and wholerock Sr-Nd isotopic analyses were performed on the volcanic rocks to better characterize their emplacement age and models for their origin. Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 123.1±0.94 Ma to 124.5±0.89 Ma for six volcanic rocks from the study area. The intermediate volcanic rocks belong to the alkaline and sub-alkaline magma series in terms of K2 O+Na2 O contents(5.9%–9.0%), and to the shoshonitic and calc-alkaline series on the basis of their high K2 O contents(1.4%–3.3%). The Gerze volcanic rocks are characterized by the enrichment of light rare earth elements [(La/Yb)N=34.9–49.5] and large–ion lithophile elements(e.g., Rb, Ba, Th, U, K, Pb, and Sr), slightly negative Eu anomalies(Eu/Eu*=0.19–0.24), and negative anomalies in high field strength elements(e.g., Nb, Ta, Hf and Ti), relative to primitive mantle. The samples show slightly elevated(87 Sr/86 Sr)i values that range from 0.7049 to 0.7057, and low εNd(t) values from-0.89 to-2.89. These results suggest that the volcanic rocks studied derived from a compositionally heterogeneous mantle source and that their parent magmas were basaltic. The more mafic, parental magmas to the Gerze volcanic rocks likely underwent fractional crystallization of clinopyroxene, hornblende, biotite, and potassium feldspar, during ascent, with little to no crustal contamination, prior to their eruption/emplacement. While these volcanic rocks exhibit geochemical signatures typical of magmas formed in a destructive plate-margin setting, it is plausible that their mantle source might also have acquired such characteristics in an earlier episode of subduction.展开更多
Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respec...Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.展开更多
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic di...The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.展开更多
The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite...The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.展开更多
The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only cons...The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.展开更多
For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating error...For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating errors or even unrealistic dating results.As the trace element concentrations of zircon can reflect its equilibrated magma characteristics,they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber.This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages,which can be used to determine a more accurate intrusion crystallization age.The late Mesozoic Huayuangong granitic pluton complex,which is located in the Lower Yangtze region,eastern China,was selected for a case study.The Huayuangong pluton comprises the central intrusion and the marginal intrusion.Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6±2.0 Ma and 125.9±1.6 Ma.These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma,from which the dated zircons crystallized.However,for the central intrusion,the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span.For each sample from the central intrusion,the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend,but rather can be divided into two groups.We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred.By screening zircon analytical spots using these two indicators,the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8±4.3 Ma and 122.9±2.2 Ma,which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.展开更多
The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic ...The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.展开更多
基金research grants No.40172030 from the NSFC and No.TG1999075502 from the Ministryof Science and Technology of China.
文摘SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.
基金supported by Project 2012CB416803 of the State Key Fundamental Programthe National Scientific and Technological Supporting Key Projects (#2011BAB06B02)Geological Survey Project No. 1212011085060
文摘The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.
文摘Widely distributed in Gyangzê-Chigu area, southern Tibet, NW- and nearly E-W-trending diabase(gabbro)-gabbro diorite dykes are regarded as the product of the large-scale spreading of the late Neo-Tethys Ocean. In order to constrain the emplacement age of these dykes, zircons of two samples from diabases in Nagarzê were dated by using the U-Pb SHRIMP method. Two nearly the same weighted mean ^206pb/^23SU ages were obtained in this paper, which are 134.9±1.8 Ma (MSWD=0.65) and 135.5 ± 2.1 Ma (MSWD=1.40), respectively. They not only represent the crystallization age of the diabase, but also documented an important spreading event of the Neo-Tethys Ocean during the late Jurassic and early Cretaceous. This dating result is of great significance to reconstruct the temporal framework of the late Neo-Tethys Ocean in the Qinghai-Tibet Plateau.
基金supported by the State Key Program of the National Natural Science of China(grant no2008ZX05023-003)the project of the State Key Laboratory of Marine Geology(grant noMG200904)the National Natural Science Foundation of China (grant no40872138)
文摘Zircon U-Pb ages of 163.8-100.4 Ma and 146.6-134.5 Ma are obtained for the granitoids from the Pearl River mouth basin, and from southern Guangdong Province, respectively. These new dating data accord well with the crystallization ages of Yanshanian granitoids broadly in the Nanling. The active continental margin of South China, as revealed by a combination of zircon U-Pb data, underwent a key granitoid-dominated magmatism in 165-100 Ma. Its evolution varied temporally, and spatially, registering under control of the paleo-Pacific slab subduction. The granitoids that occurred in 165-150 Ma broadly from the South China Sea to the Nanling are preferably related to two settings from volcanic-arc to back-arc extension, respectively. The activities of Cretaceous granitoids migrated from the southeastern Guangdong (148-130 Ma) to the Pearl River Mouth basin (127-112 Ma), corresponding to the model of a retreating subduction. The subduction-related granitoid magmatism in South China continued until 108-97 Ma. A tectonic transformation from slab-subduction to extension should occur at -100 Ma.
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
文摘Abundant small mafic intrusions occur associated with granitoids along the Gangdise^ magmatic belt. In addition to many discrete gabbro bodies within the granitoid plutons, a gabbro-pyroxenite zone occurs along the southern margin of the Gangdise^ belt to the north of the Yarlung Zangbo suture. The mafic intrusion zone spatially corresponds to a strong aeromagnetic anomaly, which extends -1400 km. The mafic intrusions consist of intermittently distributed small bodies and dikes of gabbro and dolerite with accumulates of pyroxenite, olivine pyroxenite, pegmatitic pyroxenite and amphibolite. Much evidence indicates that the Gangdise^ gabbro-pyroxenite assemblage is most likely a result of underplating of mantle-derived magma. Detailed field investigation and systematic sampling of the mafic rocks was conducted at six locations along the Lhasa-Xigaze^ segment of the mafic intrusive zone, and was followed by zircon SHRIMP Ⅱ U-Pb dating. In addition to the ages of two samples previously published (47.0±1 Ma and 48.9±1.1 Ma), the isotopic ages of the remaining four gabbro samples are 51.6±1.3Ma, 52.5±3.0 Ma, 50.2±4.2Ma and 49.9±1.1Ma. The range of these ages (47-52.5 Ma) provide geochronologic constraints on the Eocene timing of magma underplating beneath the Gangdise^ belt at ca. 50 Ma. This underplating event post-dated the initiation of the India-Eurasia continental collision by 15 million years and was contemporaneous with a process of magma mixing. The SHRIMP Ⅱ U-Pb isotopic analysis also found several old ages from a few zircon grains, mostly in a range of 479-526 Ma (weighted average age 503±10 Ma), thus yielding information about the pre-existing lower crust when underplating of mafic magma took place. It is believed that magma underplating was one of the major mechanisms for crustal growth during the Indian-Eurasia collision, possibly corresponding in time to the formation of the 14-16 km-thick "crnst-mantle transitional zone" characterized by Vp=6.85-6.9 km/s.
基金supported by Hu Zhaochu and Zheng Shu of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Wuhan)the National Natural Science Foundation of China (No. 40872074)+1 种基金the National Key Basic Research Program (No. 2007CB411408)the State Key Laboratory of Ore Deposit Geochemistry(No. KCZX20090106) for their financial support
文摘The LA-ICP-MS U-Pb zircon dating of eight typical samples from four units of the Bozhushan granite intrusion in southeastern Yunnan Province, constrains the age of acidic magmatic intrusion in this area. Both the oscillatory zoning and chondrite-normalized REE patterns characterized by LREE-depletion and HREE-enrichment with positive Ce anomaly and negative Eu anomaly indicate the magmatic genesis of these zircons. Eight zircon samples from the Bozhushan granite yielded a mean 206 Pb/ 238 U age of (85.58±1.0) Ma (MSWD=4.1) to (88.10±0.66) Ma (MSWD=1.8). These chronology data suggest an accurate isotopic age for the intrusion of the Bozhushan granite, and are different from the published age data of 48 to 111.5 Ma. The geochronology data of the Gejiu, Dulong and Dachang super-large deposits and related Yanshanian granites indicated that there occurred large-scale granitic magmatism and mineralization events in western Nanling region during the Late Cretaceous.
基金theChineseAcademyofGeologicalSciences (No .I50C0 0 2 0 04)ChineseContinentalSienceDrill (No .2 0 0 0 4 0 90 )
文摘Mesozoic volcanic rocks in the eastern part of the North Dabi e Mountains are rich in Na (Na\-2O=\{4.03%\}, Na\-2O/K\-2O=\{1.31\}), Sr and Ba , and high in Sr/Y ratio but low in Nb, Y and H REE. They have experienced strong fractionation of REE \, and are similar to adakite in geochemical characteristics. The U-Pb dating of zircon from the volcanic rocks is Ma, belonging to Early Cretaceous. These rocks are similar to the volcanic rocks of North Huaiyang not only in age and rare-earth element and trace element geochemistry, but also in the formati on temperature and pressure of the minerals. The results indicated that the dela mination of mountain root and underplating of mafic-ultramafic magma had happen ed in the Dabie orogen before Early Cretaceous. Mesozoic magmatism was intense i n the North Dabie Mountains, including the intrusion of mafic-ultramafic magma, uplifting of gneiss dome, explosion of volcanic rocks and intrusion of granitic magma. The Mesozoic volcanic rocks in the eastern part of the North Dabie Mount ains may be one part of the Mesozoic volcano-intrusive complex belt of North Hu aiyang. The existence of Mesozoic volcanic remnant cap means the denudation of t he Dabie orogenic belt was not very strong since Early Cretaceous.
基金supported by the "973"Project for Basic Research of China (No. 2011CB403103)Ministry of Land and Resources’ Special Funds for Scientific Research on Public Causes (No. 200911007-02)China Geological Survey’ Special Funds for Scientific Research on Qinghai-Tibet Plateau (No. 1212010012005)
文摘The multi-stage intrusions of intermediate-acid magma occur in the Bangpu mining district, the petrogenic ages of which have been identified. The times and sequences of their emplacement have been collated and stipulated in detail in this paper by using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating method. The ages of biotite monzogranite that were formed before mineralization in the southwest of this mining district are 70±1 Ma (mean square of weighted deviates (MSWD) =9.5, n=8) and 60.60±0.31 Ma (MSWD=3.8, n=16), which belong to the late Cretaceous-early Paleocene in age. That means, they are products of an early tectonicmagmatic event of the collision between the Indian and Asian continentals. The ages of ore-bearing monzogranite porphyry and ore-bearing diorite porphyrite are 16.23±0.19 Ma (MSWD=2.0, n=26) and 15.16±0.09 Ma (MSWD=3.9, n=5) separately, which belong to the middle Miocene in age; namely, they are products of the Gangdese post-collision extensional stage when crust-mantle materials melted and mixed as well as magmatic intrusion simultaneously occurred. Some zircons with ages of 203.6±2.2 Ma (MSWD=1.18, n=7) were captured in the ore-bearing diorite porphyrite, which shows that there had been tectono-magmatic events in the late Triassic-early Jurassic. Molybdenum (copper) ore-bodies produced in the monzogranite porphyry and copper (molybdenum) ore-bodies produced in the diorite porphyrite are the main ore types in this ore deposit. The model ages of Re-Os isotopic dating for the 11 molybdenite are 13.97-15.84 Ma, while isochron ages are 14.09±0.49 Ma (MSWD=26). The isochron ages of seven molybdenite from molybdenum (copper) ore with monzogranite porphyry type are 14.11±0.31 Ma (MSWD=5.2). There is great error in the isochron ages of four molybdenite from copper (molybdenum) ore with diorite porphyrite type, and their weighted average model ages of 14.6±1.2 Ma (MSWD=41), which generally represent the mineralization age. The results about the Re-Os isotopic dating of molybdenite in the ore of different types have limited exactly that, the minerlazation age of this ore deposits is about 14.09 Ma, which belongs to the middle Miocene mineralization. The Bangpu deposit has a uniform metallogenic dynamics background with the porphyry type and skarn-type deposits such as Jiama, Qulong and others.
基金supported by funds from the Chinese Ministry of Science and Technology (Grant No. 2009CB825003)the State Key Laboratory of Continental Dynamics, Northwest Universitythe National Natural Science Foundation of China (Grant Nos. 40972128 and 40902022)
文摘Changshagou adakite, an outcrop in the middle segment of the South Altyn Tagh ultra-high pressure metamorphism (UHPM) terrane, contains medium-K cal-alkaline and weakly peraluminous compositions (SiO2 = 66.79% to 68.65%, Al2O3 = 17.48% to 18.31%, K20 + Na20 = 6.32% to 6.88%, K2O/Na2O = 0.25 to 0.33, A/CNK = 1.01 to 1.06). This outcrop is also enriched with large ion lithophile elements but with depleted high-field strength elements (HFSE) showing clearly negative Nb, Ta, and Ti anomalies. REE distribution patterns show a positive anomaly of Eu (6Eu = 1.15 to 1.31) and weakly enriched with LREE compared with HREE (LREE/HREE = 1.02 to 4.20). Experimental results and several characteristics, including relatively low Nb/Ta ratios (6.03 to 8.45) and high Sr, Sr/Y, (La/Yb)N and low Y and Yb, which indicate the presence of residual garnet and the absence of plagioclase in the source region, show that adakite may form at a pressure ranging from 1.2 GPa to 1.5 GPa and at a temperature of approximately 900~C. Low Cr, Ni, and Mg# values, trace element patterns, and SiO2- Mg# and SiO2-MgO diagrams indicate that rocks are formed by the partial melting of a thickened lower continental crust. LA-ICP-MS in situ U-Pb dating yields two group ages: 503.1±1.7 Ma (core) and 453.1±3.0 Ma (rim). The Th/U ratios of the core and the rim are 0.11 to 0.40 and 0.03 to 0.07, respectively. Considering the zircon CL image characteristics, Th/U ratios, and previous studies on regional UHPM rocks, adakite formed at 503.1 ± 1.7 Ma and underwent a tectothermal event as a result of the break-off of the Altyn deep subducted continental crust at 453.1 ± 3.0 Ma.
文摘LA-ICPMS Zircon U-Pb dating is applied to volcanic rocks overlying and underlying the Salamander-bearing bed in the Daohugou beds of Ningcheng in Inner Mongola and Reshuichang of Lingyuan and Mazhangzi of Jianping in western Liaoning. The results indicate that the youngest age of the rocks in Daohugou of Ningcheng is 158 Ma, and the oldest one is 164 Ma. Synthesized researches indicate that the salamander-bearing beds in Daohugou of Ningcheng, Reshuichang of Lingyuan and Mazhangzi of Jianping were developed in the same period. The Daohugou beds were formed in the geological age of 164-158 Ma of the middle-late Jurassic. Whilst, the Daohugou beds and its corrdative strata should correspond to the Tiaojishan Formation (or Lanqi Formation) of the middle Jurassic in northern Hebei Province and western Liaoning Province, based on the disconformity between the Daohugou beds and its overlaying beds of the Tuchengzi Formation of Late Jurassic and the Jehol Beds of early Cretaceous, and the disconformity between the Daohugou Beds and its underlying Jiulongshan Formation, which is composed of conglomerate, sandstone, shale with coal and thin coal beds.
基金supported by the Key Program of the Ministry of Land and Resources of China(Grant Nos.1212010811033, 1212010711815)
文摘This paper carried out a study on U--Th--Pb behavior of zircons in a "dry" rock system during high-grade metamorphism in the Archean basement of eastern Sbandong. The studied sample has a mineral assemblage of plagioclase + K-feldspar + clinopyroxene + biotite + quartz and its pro- tolith is considered to be diorite. The zircons are stubby, equant or irregular in shape and show fir-leaf, sectorial, banded or oscillatory zoning. They contain inclusions, including mineral assemblages of clinopyroxene + orthopyroxene + hornblende + quartz and plagioclase + K-feldspar + biotite + quartz. Fifty SHRIMP analyses were performed on 34 zircon grains, which commonly yielded high Th/U ratios (mostly 〉0.5). Most analyses are distributed along concordia from 2.54 to 2.25 Ga, with the youngest age being - 1.95 Ga. Compositions and ages show large variations even in a same zircon grain. Combined with early studies, conclusions can be drawn as follows: 1) the diorite underwent two episodes of high-grade metamorphism, at the end of the Neoarchean and the Paleoproterozoic (-2.50 Ga and 1.95 Ga or slightly later); 2) high-grade metamorphism in a "dry" rock system may partially reset the U--Th--Pb system of zircons and, in this case, the ages between the oldest and youngest are chronologically meaningless; and 3) high Th/U ratios may be common features of zircons formed during high-grade metamorphic conditions.
基金supported by the National Natural Science Foundation of China (grants # 41373028 and 41573022)
文摘Post-collisional volcanic rocks of Mesozoic age occur in the regions adjacent to Gerze, part of the southern Qiangtang Terrane of northern Tibet, China. Geochronological, geochemical, and wholerock Sr-Nd isotopic analyses were performed on the volcanic rocks to better characterize their emplacement age and models for their origin. Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 123.1±0.94 Ma to 124.5±0.89 Ma for six volcanic rocks from the study area. The intermediate volcanic rocks belong to the alkaline and sub-alkaline magma series in terms of K2 O+Na2 O contents(5.9%–9.0%), and to the shoshonitic and calc-alkaline series on the basis of their high K2 O contents(1.4%–3.3%). The Gerze volcanic rocks are characterized by the enrichment of light rare earth elements [(La/Yb)N=34.9–49.5] and large–ion lithophile elements(e.g., Rb, Ba, Th, U, K, Pb, and Sr), slightly negative Eu anomalies(Eu/Eu*=0.19–0.24), and negative anomalies in high field strength elements(e.g., Nb, Ta, Hf and Ti), relative to primitive mantle. The samples show slightly elevated(87 Sr/86 Sr)i values that range from 0.7049 to 0.7057, and low εNd(t) values from-0.89 to-2.89. These results suggest that the volcanic rocks studied derived from a compositionally heterogeneous mantle source and that their parent magmas were basaltic. The more mafic, parental magmas to the Gerze volcanic rocks likely underwent fractional crystallization of clinopyroxene, hornblende, biotite, and potassium feldspar, during ascent, with little to no crustal contamination, prior to their eruption/emplacement. While these volcanic rocks exhibit geochemical signatures typical of magmas formed in a destructive plate-margin setting, it is plausible that their mantle source might also have acquired such characteristics in an earlier episode of subduction.
基金supported by the National Natural Science Foundation of China (grant no. 41272218)the Fundamental Research Funds for the Central Universitiesthe State Key Program of the National Natural Science of China (grant no. 2011ZX05023-003)
文摘Five Paleogene volcanics sampled from the northern South China Sea were analyzed via LA-ICP-MS zircon U-Pb dating, including basalt and andesite from Borehole SCSVI and volcanic agglomerate from Borehole SCSV2, respectively. A total of 162 zircon U-Pb dates for them cover an age range from Neoarchean to Eocene, in which the pre-Paleocene data dominate. The Paleogene dates of 62.5±2.2 Ma and 42.1±2.9 Ma are associated with two igneous episodes prior to opening of South China Sea basin. Those pre-Paleocene zircons are inherited zircons mostly with magmatogenic oscillatory zones, and have REE features of crustal zircon. Zircon U-Pb dates of 2518-2481 Ma, 1933- 1724 Ma, and 1094-1040 Ma from the SCSV1 volcanics, and 2810-2718 Ma, 2458-2421 Ma, and 1850-993.4 Ma from the SCSV2 volcanics reveal part of Precambrian evolution of the northern South China Sea, well comparable with age records dated from the Cathaysia block. The data of 927.0±6.9 Ma and 781±38 Ma dated from the SCSV2 coincide with amalgamation between Yangtze and Cathaysia blocks and breakup of the Rodinia, respectively. The age records of Caledonian orogeny from the Cathaysia block are widely found from our volcanic samples with concordant mean ages of 432.0±5.8 Ma from the SCSV1 and of 437±15 Ma from the SCSV2. The part of the northern South China Sea resembling the Cathaysia underwent Indosinian and Yanshannian tectonothermal events. Their age signatures from the SCSV1 cover 266.5±3.5 Ma, 241.1±6.0 Ma, 184.0±4.2 Ma, 160.9±4.2 Ma and 102.8±2.6 Ma, and from the SCSV2 are 244±15 Ma, 158.1±3.5 Ma, 141±13 Ma and 96.3±2.1 Ma. Our pre-Paleogene U-Pb age spectra of zircons from the borehole volcanics indicate that the northern South China Sea underwent an evolution from formation of Precambrian basement, Caledonian orogeny, and Indosinian orogeny to Yanshannian magmatism. This process can be well comparable with the tectonic evolution of South China, largely supporting the areas of the northern South China Sea as part of southward extension of the Cathaysia.
基金supported by the National Natural Science Foundation of China(no.:40703012)the Basic Outlay of Scientific Research Work from the Ministry of Science and Technology of the Peoples Republic of China(no.:J0809),and Miyun Tourism Administration for the Yunmengshan National Geopark.
文摘The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U-Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U-Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.
基金support by China Geological Survey (1212010911028)NSFC(40802020)+1 种基金Ministry of Land and Resources(1212010633902,1212010633903 and 121201 0711814)CUGB(GPMR 0735)
文摘The Wurinitu molybdenum deposit,located in Honggor,Sonid Left Banner of Inner Mongolia,China,is recently discovered and is considered to be associated with a concealed fine-grained granite impregnated with molybdenite.The wall rocks are composed of Variscan porphyritic-like biotite granite and the Lower Ordovician Wubin'aobao Formation.LA-ICP-MS zircon U-Pb dating of the fine-grained granite reveals two stages of zircons,one were formed at 181.7±7.4 Ma and the other at 133.6±3.3 Ma.The latter age is believed to be the formation age of the fine-grained granite,while the former may reflect the age of inherited zircons,based on the morphological study of the zircon and regional geological setting.The Re-Os model age of molybdenite is 142.2±2.5 Ma,which is older than the diagenetic age of the fine-grained granite.Therefore the authors believe that the metallogenic age of the Wurinitu molybdenum deposit should be nearly 133.6±3.3 Ma or slightly later,i.e.,Early Cretaceous.Combined with regional geological background research,it is speculated that the molybdenum deposits were formed at the late Yanshanian orogenic cycle in the Hingganling-Mongolian orogenic belt,belonging to the relaxation epoch posterior to the compression and was associated with the closure of the Mongolia-Okhotsk Sea.
基金This research was supported by the National Natural Science Foundation of China (No. 40372036)the Key Project of the Ministry of Education, China (No. 306007).
文摘The Guandimao and Wawutang plutons are located at the center of Hunan, South China. The former is mainly composed of biotite monzonitic granites/granodiorites and two-mica monzonltic granites, but the latter only consists of biotite monzonitic granites. The zircon ages of 203.0±1.6 Ma (biotite monzonitic granites) and 208.0-23.2 Ma (two-mica monzonltic granites) for the Guandimao pluton and 204±3 Ma for the Wawutang pluton obtained with the LA-ICP-MS U-Pb dating indicate that they were formed during the late Indosinian. In consideration of other geochronological data from Indosinian rocks of South China and adjacent regions, it is inferred that the two plutons were derived from crustal materials by decompressional melting in a post-collisional tectonic setting during spontaneous thinning of the thickened curst. Moreover, the inherited zircon age of 1273±57 Ma from the Wawutang pluton indicates that the source of the two plutons is related to the early Proterozoic crustal basement.
基金financially supported by the National Natural Science Foundation of China(Grant No.41672052)the National Key R&D Program of China(Grant No.2016YFC0600203)。
文摘For magmatic rocks,it is often found that zircon 206 Pb/238 U and 207 Pb/235 U ratios continuously plot on the concordia line with a relatively large age span for the same sample,which gives rise to large dating errors or even unrealistic dating results.As the trace element concentrations of zircon can reflect its equilibrated magma characteristics,they can be used to determine whether all the analytical spots on the zircons selected to calculate the weighted mean age are cogenetic and formed in a single magma chamber.This work utilizes the results of zircon trace element concentrations and U-Pb isotopic analyses to explore the screening of reasonable U-Pb ages,which can be used to determine a more accurate intrusion crystallization age.The late Mesozoic Huayuangong granitic pluton complex,which is located in the Lower Yangtze region,eastern China,was selected for a case study.The Huayuangong pluton comprises the central intrusion and the marginal intrusion.Two samples from the marginal intrusion yielded consistent zircon weighted mean 206 Pb/238 U ages of 124.6±2.0 Ma and 125.9±1.6 Ma.These analytical spots also exhibit Zr/Hf and Th/U ratios concordant with the evolution of a single magma,from which the dated zircons crystallized.However,for the central intrusion,the analytical spots on zircons from two samples all show a continuous distribution on the concordia line with a relatively large age span.For each sample from the central intrusion,the zircon Zr/Hf ratios do not conform to a single magma evolutionary trend,but rather can be divided into two groups.We propose that zircon Zr/Hf ratios can provide a new constraint on U-Pb zircon dating and zircon Th/U ratios can also be used as a supplementary indicator to constrain zircon dating and determine the origins of the zircons and whether magma mixing has occurred.By screening zircon analytical spots using these two indicators,the two samples from the central intrusion of the Huayuangong pluton produce results of 122.8±4.3 Ma and 122.9±2.2 Ma,which are consistent with the field observations that the central intrusion is slightly younger than the marginal intrusion.
文摘The Lupa Goldfield (LGF) is one of the eight structural terranes in the NW – SE striking Ubendian Belt of SW Tanzania. The LGF is comprised of granitic gneisses with bands of amphibolites which are intruded by mafic intrusions including gabbros, granodiorites, diorites;and various granites as well as metavol-canics. These rocks are cross-cut by narrow mafic dykes and aplites. SHRIMP zircon U-Pb data are presented for the granodiorite and a mafic dyke that cross-cut the granodiorites in the Saza area of the LGF, with the aim of constraining the mafic and felsic magmatism and their implication to gold mineralization. The zircon U-Pb data shows that the Saza granodiorites were emplaced at 1924 ± 13 Ma (MSWD = 2.6) whereas the cross-cutting mafic dyke yielded a zircon U-Pb age of 1758 ± 33 Ma (MSWD = 0.88). The dated granodiorite sample was in sheared contact with an altered mafic intrusive rock, most likely a diorite, along which an auriferous quartz vein occurs. The 1924 ± 13 Ma age of granodiorites is within error of the reported molybdenite Re-Os age of 1937 Ma determined for the gold mineralization event in Lupa Goldfields. Although auriferous quartz veins are younger than the granodiorites, the more or less similar ages between the emplacement of granodiorites and the mineralizing event indicate that the granodiorites might be the heat source (or driver) of hydrothermal fluids responsible for gold mineralization in the Lupa goldfields. This would further suggest that gold mineralization in the LGF is intrusion-related type. The mafic dykes represent the youngest rocks to have been emplaced in the area and hence the 1758 ± 33 Ma age of the mafic dykes conclude the magmatic evolution in the Lupa goldfields during the Palaeoproterozoic.