To elucidate the mechanisms of Zr + reacting with COS,both the quartet and doublet potential energy surfaces (PESs) for reactions of Zr + (4 F,2 D) with COS in the gas phase have been investigated in detail by m...To elucidate the mechanisms of Zr + reacting with COS,both the quartet and doublet potential energy surfaces (PESs) for reactions of Zr + (4 F,2 D) with COS in the gas phase have been investigated in detail by means of density functional method (B3LYP).To obtain more accurate results,the coupled cluster single-point calculations (CCSD(T)) using B3LYP optimized geometries were performed.For the C-O bond activation,the calculated results indicate that both the quartet and doublet states proceed via an insertion-elimination mechanism.For the C-S bond activation,the quartet reaction has an insertion-elimination mechanism,but the doublet reaction is a direct abstraction of the sulfur atom by Zr +.The C-S bond activation is found to be energetically more favorable than the C-O bond activation.It is found that the reaction of the 4 F gound state of Zr + to yield ZrO + is spin-forbidden (Zr + (4 F) + COS (1 Σ) → ZrO + (2) + CS (1 Σ)) and the crossing points were approximately determined.All the results have been compared with the existing experimental and theoretical data.展开更多
文摘通过挤出注塑工艺制备了α-磷酸锆(α-Zr P)改性的热塑性淀粉塑料,研究了不同含量的α-Zr P对其拉伸强度、冲击强度、耐水及转矩流变性能的影响。结果表明,当α-Zr P含量为0.2%时,淀粉塑料的拉伸强度从未加时的1.94 MPa达到最高的4.5 MPa,断裂伸长率有所下降;冲击强度由50.4 k J/m2增加到55.32 k J/m2;表面接触角由46.34°增加到70.46°,耐水性改善明显;转矩流变曲线表明此时具有较高的峰值扭矩,加工性能有所下降。
基金Suppoted by the Science Foundation of Qujing Normal School (No. 2008QN004)the Scientific Research Fund of Yunnan Provincial Education (No. 09C0187)the Scientific Research Fund of Yunnan Provincial Education (No. 09Y0392)
文摘To elucidate the mechanisms of Zr + reacting with COS,both the quartet and doublet potential energy surfaces (PESs) for reactions of Zr + (4 F,2 D) with COS in the gas phase have been investigated in detail by means of density functional method (B3LYP).To obtain more accurate results,the coupled cluster single-point calculations (CCSD(T)) using B3LYP optimized geometries were performed.For the C-O bond activation,the calculated results indicate that both the quartet and doublet states proceed via an insertion-elimination mechanism.For the C-S bond activation,the quartet reaction has an insertion-elimination mechanism,but the doublet reaction is a direct abstraction of the sulfur atom by Zr +.The C-S bond activation is found to be energetically more favorable than the C-O bond activation.It is found that the reaction of the 4 F gound state of Zr + to yield ZrO + is spin-forbidden (Zr + (4 F) + COS (1 Σ) → ZrO + (2) + CS (1 Σ)) and the crossing points were approximately determined.All the results have been compared with the existing experimental and theoretical data.