期刊文献+
共找到1,061篇文章
< 1 2 54 >
每页显示 20 50 100
Relations of Microstructural Attributes and Strength-Ductility of Zirconium Alloys with Hydrides
1
作者 Chao Fang Xiang Guo +1 位作者 Jianghua Li Gang Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期407-419,共13页
As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great si... As the first safety barrier of nuclear reactors,zirconium alloy cladding tubes have attracted extensive attention because of its good mechanical properties.The strength and ductility of zirconium alloy are of great significance to the service process of cladding tubes,while brittle hydrides precipitate and thus deteriorate the overall performance.Based on the cohesive finite element method,the effects of cohesive strength,interfacial characteristics,and hydrides geometric characteristics on the strength and ductility of two-phase material(zirconium alloy with hydrides)are numerically simulated.The results show that the fracture behavior is significantly affected by the cohesive strength and that the overall strength and ductility are sensitive to the cohesive strength of the zirconium alloy.Furthermore,the interface is revealed to have prominent effects on the overall fracture behavior.When the cohesive strength and fracture energy of the interface are higher than those of the hydride phase,fracture initiates in the hydrides,which is consistent with the experimental phenomena.In addition,it is found that the number density and arrangement of hydrides play important roles in the overall strength and ductility.Our simulation provides theoretical support for the performance analysis of hydrogenated zirconium alloys during nuclear reactor operation. 展开更多
关键词 zirconium alloy HYDRIDE Strength and ductility Cohesive finite element method Microcrack initiation and propagation
下载PDF
Effects of Additives on the Microstructure and Tribology Performance of Ta-12W Alloy Micro-Arc Oxidation Coating
2
作者 刘玲 HU Changgang +1 位作者 CHENG Wendong 刘兴泉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期142-149,共8页
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte... Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness. 展开更多
关键词 micro-arc oxidation tantalum alloy ADDITIVES tribology performance
下载PDF
Effect of Different Laser Energy Nitriding on the Fretting Wear Performance of Zr Alloy
3
作者 NING Chuangming TANG Guocan +4 位作者 YU Shijia ZHOU Junbo REN Quanyao ZENG Bing CAI Zhenbing 《摩擦学学报(中英文)》 EI CAS CSCD 北大核心 2024年第9期1306-1321,共16页
The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear rea... The zirconium(Zr)alloy fuel cladding is one of the key structural components of a nuclear reactor and the first and most important line of defense for accommodating fission products.During the operation of nuclear reactors,Zr alloy fuel cladding is subjected to extreme harsh environments,such as high temperature,high pressure and high flow rate for a long period of time.The wear and corrosion resistance of Zr alloys is important for the safe operation of nuclear reactors.Surface modification can effectively improve the corrosion and wear resistance of fuel cladding.Compared with coating technology,nitriding technology does not have problems for bonding between the coating and the substrate.Current research on surface nitriding of Zr alloys mainly focuses on plasma nitriding and ion implantation techniques.Research on laser nitriding of Zr alloy surfaces and their fretting wear characteristics is scarce.In this study,the surface of Zr alloy was treated with laser nitriding at different laser energies.The microstructure of Zr alloy treated with different laser energies and its fretting wear performance were studied.The results showed that after nitriding with different laser energies,the surface of the Zr alloy showed a typical molten state after melting,vaporizing and cooling under the thermal effect of the laser,and this state was more obvious with the increase of the laser energy.At the same time,doping of N atoms and formation of the ZrN phase led to different cooling rates in the molten zone that produced large tensile stresses after cooling.This led to cracks on the surface of Zr alloys after laser nitriding at different energies,and the crack density increased with increasing laser energy.This also led to an increase in the surface roughness of the Zr alloy with increasing laser energy after laser nitriding treatment.Due to the presence of water in the industrial nitrogen,nitrides were generated on the surface of the sample along with some oxides.When the laser energy was 100 mJ,there was no ZrN generation,and N existed mainly as a diffusion layer within the Zr alloy substrate.ZrN generated when the laser energy reached 200 mJ and above,which increased with the increase of laser energy.Due to the generation of ZrN phase and the presence of some oxides,the surface Vickers hardness of Zr alloys after laser nitriding treatment at different energies increased by 37.5%compared to Zr alloys.After laser nitriding treatment,the wear mechanism of Zr alloys changed.For the untreated Zr alloys,the wear mechanism was dominated by delamination and spalling wear,accompanied by oxidative and abrasive wear.The phenomenon of delamination and peeling decreased with the increase of laser energy.Wear mechanisms changed to predominantly abrasive wear with oxidative wear and delamination spalling.The wear volume of sample nitriding with laser energy 400 mJ was reduced by 46.5%compared with that of untreated Zr alloy. 展开更多
关键词 zirconium alloy fretting wear laser nitriding DELAMINATION laser energy
下载PDF
Microstructural evolution of zirconium alloy under dynamic compression at strain rate of 1000s^(-1)
4
作者 邹东利 栾佰峰 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2402-2408,共7页
Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by seve... Microstructural evolution of the zirconium alloy deformed at a strain rate of about 1000 s-1 was investigated. Four different strain levels of the zirconium alloy subjected to dynamic compression were designed by several-times impacting at almost the same strain rate. The results show that abundant low angle boundaries at different strain levels were observed in the deformed microstructures, and the quantity and density of low angle boundary increase dramatically with the strain increasing. Besides low angle boundaries and high angle boundaries observed in grain boundary maps, the twin boundaries including the tensile twins {10 2}, {11 1} and compressive twins {11 2} were distinguished at different strain levels, and most twin boundaries were indexed as {10 2} twins. With the stain increasing, the twin boundary density in the deformed microstructures increases indistinctively. Based on the characterization of the deformed microstructures at the different strain levels, the deformation and evolution processes of the zirconium alloy subjected to dynamic loading were proposed. Microhardness measurements show that the microhardness in the impacted specimens increases gradually with the strain increasing, which should be associated with the strain hardening caused by the tangled dislocation. 展开更多
关键词 zirconium alloy dynamic compression plastic deformation
下载PDF
EFFECT OF MELT OVER-HEATING AND ZIRCONIUM ALLOYING ON THE MORPHOLOGY OF Al_9FeNi PHASE AND MECHANICAL PROPERTIES OF 2618 ALLOY 被引量:6
5
作者 J.H. WangMechanical Engineering Institute of Xiangtan University, Xiangtan 411105, ChinaD.Q. YiDepartment of Materials Science and Technology of Central South University, Changsha 410083, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期525-530,共6页
The effect of melt over-heating on the morphology of Al_9FeNi phase in 2618aluminum alloy with high contents of Fe and Ni and 0.22 wt. percent zirconium has been investigatedby optical microscopy. SEM and TEM. The mec... The effect of melt over-heating on the morphology of Al_9FeNi phase in 2618aluminum alloy with high contents of Fe and Ni and 0.22 wt. percent zirconium has been investigatedby optical microscopy. SEM and TEM. The mechanical properties of 2618 aluminum alloy after hotextrusion and quenching/aging have been tested. The results show: melt over-heating treatment of2618 alloy with high contents of Fe and Ni at 960 deg C led to finer and better-distributedneedle-like Al_9FeNi phase in cast microstructure and fine Al_9FeNi particles after hot extrusion;the grain size of the alloy after hot extrusion could also be refined evidently by alloying ofzirconium; the ambient and high temperature tensile strength and elongation of 2618 alloy have beenapparently enhanced due to fine Al_9FeNi particles and dispersed Al_3Zr as well as fine grain size. 展开更多
关键词 melt over-heating 2618 alloy zirconium alloying morphology of Al_9FeNiphase mechanical property
下载PDF
Effects of tantalum addition on microstructure and properties of titanium alloy fabricated by laser powder bed fusion 被引量:4
6
作者 ZHOU Li-bo SHU Jing-guo +6 位作者 SUN Jin-shan CHEN Jian HE Jianjun LI Wei HUANG Wei-ying NIU Yan YUAN Tie-chui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1111-1128,共18页
The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles... The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles(2 wt%−8 wt%)and fabricated by L-PBF.The microstructure consists of aβmatrix with partially unmelted pure tantalum distributed along the boundaries of molten pool owing to the Marangoni convention.Because the melting process of Ta absorbs lots of energy,the size of molten pool becomes smaller with the increase of Ta content.The fine microstructure exists in the center of melt pool while coarse microstructure is on the boundaries of melt pool because of the existence of heat-affected zone.The columnar-to-equiaxed transitions(CETs)happen in the zones near the unmelted Ta,and the low lattice mismatch induced by solid Ta phase is responsible for this phenomenon.The recrystallization texture is strengthened while the fiber texture is weakened when the tantalum content is increased.Due to the formation of refined martensiteα′grains during L-PBF,the compressive strengths of L-PBF-processed samples are higher than those fabricated by traditional processing technologies.The present research will provide an important reference for biomedical alloy design via L-PBF process in the future. 展开更多
关键词 laser powder bed fusion titanium alloys tantalum solidification microstructure texture evolution
下载PDF
Existing form and effect of zirconium in pure Mg,Mg-Yb,and Mg-Zn-Yb alloys 被引量:1
7
作者 YU Wenbin HE Hong +3 位作者 LI Chunmei LI Qing LIU Zhiyi QIN Bing 《Rare Metals》 SCIE EI CAS CSCD 2009年第3期289-296,共8页
The existing form and grain refining effects of small zirconium addition in pure Mg, Mg-Yb and Mg-Zn binary alloys, and Mg-Zn-Yb ternary alloy (ZK60-Yb) were investigated. The results show that Zr element exists mai... The existing form and grain refining effects of small zirconium addition in pure Mg, Mg-Yb and Mg-Zn binary alloys, and Mg-Zn-Yb ternary alloy (ZK60-Yb) were investigated. The results show that Zr element exists mainly in single and cluster particles of pure α-Zr or Zn-Zr compounds inside grains and at grain boundaries. Only the particles located in the interior of grains can act as the nucleus for α-Mg growth and effectively promote the formation of fine equiaxed grains. The broken and dispersed Zr-rich particles produced during the hot extrusion process can form nebulous banded structure in which these fine particles may act as obstacles to dislocation motion in wrought magnesium alloys. 展开更多
关键词 magnesium alloys zirconium grain refinement microstructure YTTERBIUM
下载PDF
Effects of annealing treatments on forming performance of zirconium alloys 被引量:2
8
作者 Cong-yi LEI Jian-zhong MAO +2 位作者 Dian-wu ZHOU Xiao-min ZHANG Lian WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第9期2908-2921,共14页
The effects of annealing treatments(ATs)on the microstructure of Zr-Sn-Nb alloy strips were studied.Based on the characteristics of strips for nuclear fuel assemblies,punching experiments were carried out and the form... The effects of annealing treatments(ATs)on the microstructure of Zr-Sn-Nb alloy strips were studied.Based on the characteristics of strips for nuclear fuel assemblies,punching experiments were carried out and the formability of zirconium alloy strips was quantitatively evaluated.The results indicate that the proportions of small-angle grain boundaries of the zirconium alloy under conditions of annealing treatment at 580°C(ATⅠ)and annealing treatment at 620°C(ATⅡ)are 14.3%and 23.2%,respectively,while that of the as-received material is 12.4%.And the forming limit margin fields of the zirconium alloy under ATⅠcan reach 0.43%,while the values of the as-received material and the ATⅡare-0.35%and-2.8%,respectively.The annealing process affects the evolution process of the strip recrystallization texture and the grain size.Moreover,the total texture and pole density are closely related to the degree of anisotropy of the strip.Besides,the small-angle grain boundary affects the strain path and crack expansion of the necking unit during the strip punching process,while the grain size affects the hardening exponent of the material. 展开更多
关键词 forming performance zirconium alloys annealing process strain path forming limit TEXTURE
下载PDF
Interfacial reaction between zirconium alloy and graphite mold/yttrium oxide ceramic mold 被引量:2
9
作者 Xie Huasheng Liu Hongyu +2 位作者 Zhao Jun Liu Shibing Shi Kun 《China Foundry》 SCIE CAS 2014年第2期85-90,共6页
Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are di... Zirconium alloys are active in the molten state and tend to react with the mold during casting. The casting technology of zirconium is not yet well established; especially in selecting the mold materials, which are difficult to determine. In the present work, the interfacial reactions between zirconium casting and casting mold were studied. The zirconium alloy was melted in a vacuum arc skull furnace and then cast into the graphite mold and ceramic mold, respectively. The zirconium casting samples were characterized using SEM, EDS and XRD with an emphasis on the chemical diffusion of elements. A reaction layer was observed at the casting surface. Chemical analysis shows that chemical elements C, O and Y from the mold are diffused into the molten zirconium, and new phases, such as ZrC, Zr30, YO1.335 and Y6ZrO11, are formed at the surface. In addition, an end product of zirconium valve cast in a yttria mold has a compact structure and good surface quality. 展开更多
关键词 graphite mold yttrium oxide ceramic mold zirconium alloy reaction layer
下载PDF
The Influence of Different Contents of Bi Addition on the Corrosion Behavior of Various Zirconium-Based Alloys 被引量:1
10
作者 Meiyi Yao Xiaotong Wu +6 位作者 Wenrong Duan Weipeng Zhang Li Zhu Linghong Zou Jinlong Zhang Qiang Li Bangxin Zhou 《Journal of Environmental Protection》 2016年第4期495-501,共7页
Zr-4(Zr-1.5Sn-0.2Fe-0.1Cr,wt%), S5(Zr-0.8Sn-0.34Nb-0.39Fe-0.1Cr), T5(Zr-0.7Sn-1.07Nb-0.32Fe-0.08Cr) and Zr-1Nb were adopted to prepare Bi-containing zirconium alloys for systematically investigating the effect of Bi a... Zr-4(Zr-1.5Sn-0.2Fe-0.1Cr,wt%), S5(Zr-0.8Sn-0.34Nb-0.39Fe-0.1Cr), T5(Zr-0.7Sn-1.07Nb-0.32Fe-0.08Cr) and Zr-1Nb were adopted to prepare Bi-containing zirconium alloys for systematically investigating the effect of Bi addition on the corrosion resistance of zirconium alloys. The specimens were corroded in superheated steam at 400℃/10.3 MPa, and in lithiated water with 0.01 M LiOH or in deionized water at 360℃/18.6 MPa by autoclave testing. Results show that the corrosion resistance increases with the increasing of Bi content dissolved in α-Zr. But the presence of Bi-con- taining second phase particles (SPPs) is unfavorable for the enhancement of corrosion resistance. This indicates that the Bi dissolved in α-Zr matrix plays an important role in improving the corrosion resistance, while the precipitation of the Bi-containing SPPs does harm to the corrosion resistance. 展开更多
关键词 BI zirconium alloy Corrosion Resistance SPPS
下载PDF
Different grain refinement mechanisms of minor zirconium and cerium in magnesium alloys 被引量:1
11
作者 余琨 黎文献 +1 位作者 王日初 张世军 《中国有色金属学会会刊:英文版》 CSCD 2007年第A01期405-408,共4页
Zirconium and rare earth element cerium were added in magnesium and magnesium alloys to study their different grain refinement mechanisms. The results show that zirconium has an obvious refinement effect on the cast g... Zirconium and rare earth element cerium were added in magnesium and magnesium alloys to study their different grain refinement mechanisms. The results show that zirconium has an obvious refinement effect on the cast grain of magnesium and its alloys without the alloy element Al because the crystal structure of zirconium is the same as magnesium matrix,and the lattice parameters are close to magnesium. Zirconium can decrease the grain size of magnesium from 150 to 20 μm. The rare earth cerium also has a grain refinement effect on Mg and Mg-Al alloy. The cerium atoms tend to remain in the liquid rather than solidify with the solvent atoms magnesium at the solid-liquid interface. The liquid constitutional undercooling can provide a heterogeneous crystal nucleation. The grain is refined from 200 μm to 40-80 μm. These two elements have different grain refinement mechanism on Mg alloy. The mechanism of zirconium is that it acts as the nuclei of α-Mg. But the mechanism of cerium is that it increases the liquid constitutional undercooling that can provide a heterogeneous crystal nucleation for the alloy. 展开更多
关键词 镁合金 晶粒细化法
下载PDF
Surface Composition and Corrosion Property of TiNi Alloys Coated with Tantalum Films
12
作者 Yan CHENG, Wei CAI and Liancheng ZHAOSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第4期474-476,共3页
Multi-arc ion plating method was employed to coat TiNi alloys with Ta in order to improve radiopacity and corrosion resistance property. The surface composition, corrosion resistance property and Ni ions release amoun... Multi-arc ion plating method was employed to coat TiNi alloys with Ta in order to improve radiopacity and corrosion resistance property. The surface composition, corrosion resistance property and Ni ions release amount of TiNi alloys coated with Ta films compared with TiNi alloys, are investigated by means of X-ray photoelectron spectrometry (XPS), electrochemical measurements and atomic absorption spectrophotometry (AAS), respectively. The results show that the coated surface composition is composed of Ta and 0 and the corrosion resistance is improved, whereas the Ni ions release amount of the coated sample is lower than that of the uncoated samples in the whole immersion period, indicating that Ta coating can improve the biocompatibility of TiNi alloys. 展开更多
关键词 TiNi alloy tantalum COATING CORROSION
下载PDF
OUT-OF-PILE CORROSION RESISTANCE OF NEW ZIRCONIUM ALLOYS IN 500 ℃/10 3MPa STEAM
13
作者 Z.K. Li 1,2) , L.Zhou 1,2) , J.Z. Liu 1) , P.Z. Li 1) and W.J. Zhao 3) 1) Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China 2) Xi’an Jiaotong University, Xi’an 710049,China 3) Nuclear Power Institute of China, 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期974-978,共5页
he out of pile corrosion resistance of new Zirconium alloys in 500℃/10 3MPa steam has been investigated and the effect of alloying elements, Sn,Nb,Fe,Cr on the property has been analyzed. The results show that the... he out of pile corrosion resistance of new Zirconium alloys in 500℃/10 3MPa steam has been investigated and the effect of alloying elements, Sn,Nb,Fe,Cr on the property has been analyzed. The results show that the new alloys have better corrosion resistance than Zircaloy 4. That no nodular corrosion is found during test cycles shows the nodular corrosion resistance can be dramatically improved by addition of alloying elements Nb. The Fe/Cr ratio should be properly controlled if there is Cr addition in the alloys when developing new alloys. 展开更多
关键词 zirconium alloy alloying element corrosion resistance second particle
下载PDF
Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy
14
作者 Xiang Qingchun Zhao Jing +2 位作者 Pan Haicheng Hou Lina Li Rongde 《China Foundry》 SCIE CAS 2011年第1期137-140,共4页
The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated.The experimental results show tha... The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated.The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy,the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined.The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains.As the additions of Sc and Zr are 0.4% and 0.2%,respectively,the tensile strength,yield strength and elongation of the alloy are relatively better,which are 275.0 MPa,176.0 MPa and 8.0% respectively.The tensile strength is increased by 55.3%,and the elongation is nearly raised three times,compared with those of the alloy without Sc and Zr additions. 展开更多
关键词 Al-Cu-Mg alloy scandium (Sc) zirconium (Zr) combination alloying mechanical properties
下载PDF
Study on Corrosion Resistance of N36 Zirconium Alloy in LiOH Aqueous Solution
15
作者 Chao Sun Zhongbo Yang Zongpei Wu 《World Journal of Nuclear Science and Technology》 2018年第2期30-37,共8页
Zr-Sn-Nb-Fe alloys are one of the important directions for continuous improvement of zirconium alloys for high burn-up fuel assemblies. The corrosion resistance of Zr-Sn-Nb-Fe alloys is closely related to the alloying... Zr-Sn-Nb-Fe alloys are one of the important directions for continuous improvement of zirconium alloys for high burn-up fuel assemblies. The corrosion resistance of Zr-Sn-Nb-Fe alloys is closely related to the alloying element and water chemical condition. To better understand the effect of Sn on corrosion resistance of Zr-Sn-Nb-Fe alloy, the normal N36 (Zr-1Sn-1Nb-0.3Fe) and low-tin N36 (Zr-0.8Sn-1Nb-0.3Fe) alloy sheets were prepared and tested in static autoclave in both of 0.01 mol/L LiOH and 0.03 mol/L LiOH aqueous solution at 360&deg;C and 18.6 MPa. The characteristics of the microstructure and oxide film of alloys were analyzed by TEM and SEM respectively. It was shown that that the corrosion transition of the normal N36 appears earlier and the weight gain is higher than the low-tin N36 in two corrosive mediums. The cracks paralleling to the interface of oxide/metal are formed in the fracture surface of the oxide film and the micrographs at the oxide film/substrate interface appear uneven morphology. With the increasing of corrosion gain, there are more parallel cracks in oxide film and the uneven morphology at the oxide film/substrate interface is more obvious. 展开更多
关键词 N36 zirconium alloy Corrosion OXIDE FILMS MORPHOLOGY
下载PDF
Grain refinement of W-Ni-Fe heavy alloys by tantalum element adding
16
作者 罗述东 唐新文 易健宏 《中国有色金属学会会刊:英文版》 CSCD 2004年第2期241-245,共5页
90W-7Ni-3Fe and (90-x)W-xTa-7Ni-3Fe (x=1,3,5,7,10) specimens were attained by liquid phase sintering. A model describing the process of liquid forming and spreading was proposed to point out the differences between al... 90W-7Ni-3Fe and (90-x)W-xTa-7Ni-3Fe (x=1,3,5,7,10) specimens were attained by liquid phase sintering. A model describing the process of liquid forming and spreading was proposed to point out the differences between alloys doped with tantalum and traditional tungsten heavy alloys. Tantalum priority of entering matrix and a relative high solubility in liquid matrix depress tungsten solubility in liquid matrix, which decreases kinetic rate constant K and consequently results in the reduction of W grain size. The grain refinement is influenced by Ta content and becomes more obvious when Ta content is over 5%. The sample with less than 3%Ta has dominant W and matrix phases. While besides W and matrix phases, intermetallic phases emerge in 85W-5Tai-7Ni-3Fe sample. Ta is superfluous and forms a new tantalum phase when more than 7% Ta is added into alloys. 展开更多
关键词 W-NI-FE合金 合金化 高比重合金 晶粒细化 钨合金
下载PDF
氢含量对锆合金蠕变-疲劳行为的影响及机理研究
17
作者 陈乐 许江涛 +3 位作者 王朋飞 李顺平 戴训 刘肖 《有色金属工程》 CAS 北大核心 2024年第4期43-50,共8页
针对反应堆用锆合金渗氢后易发生蠕变-疲劳失效问题,采用频率修正应变寿命法和频率修正滞回能法研究了再结晶状态的锆合金在320oC、不同渗氢含量下的蠕变-疲劳行为。结果表明:随保持时间增加,无渗氢试样的抗蠕变-疲劳性能降低,但保持时... 针对反应堆用锆合金渗氢后易发生蠕变-疲劳失效问题,采用频率修正应变寿命法和频率修正滞回能法研究了再结晶状态的锆合金在320oC、不同渗氢含量下的蠕变-疲劳行为。结果表明:随保持时间增加,无渗氢试样的抗蠕变-疲劳性能降低,但保持时间30 s以上时无明显影响;保持时间对渗氢试样的抗蠕变-疲劳性能无影响。不同保持时间下,未渗氢试样的抗蠕变-疲劳性能最好,0.04%氢含量试样的性能最差,0.005%氢含量在高应变水平(高滞回能)下的抗蠕变-疲劳性能弱于0.02%氢含量试样,而在低应变水平区域优于0.02%氢含量试样。氢含量的影响机理为:固溶氢可提高蠕变-疲劳寿命,氢化物可降低蠕变-疲劳寿命;0.04%氢含量试样中氢化物起主导作用,导致其蠕变-疲劳性能最差。 展开更多
关键词 锆合金 蠕变-疲劳 渗氢 滞回能
下载PDF
核用锆合金管氧化过程中光谱发射率特性研究
18
作者 张凯 桂康 +1 位作者 叶林 刘若语 《传感器与微系统》 CSCD 北大核心 2024年第10期66-70,共5页
发射率在锆合金管非接触测温的准确性和失水事故情况下的传热分析上具有重要意义。本文采集了SZA4、SZA6和ZIRLO 3种锆合金在400,500,600℃下氧化100min过程中4~12μm内的光谱发射率数据,分析了温度、氧化膜厚度和合金组分对材料光谱发... 发射率在锆合金管非接触测温的准确性和失水事故情况下的传热分析上具有重要意义。本文采集了SZA4、SZA6和ZIRLO 3种锆合金在400,500,600℃下氧化100min过程中4~12μm内的光谱发射率数据,分析了温度、氧化膜厚度和合金组分对材料光谱发射率特性的影响规律。结果表明,3种锆合金在氧化过程中发射率变化趋势基本相同,但组分差异导致在发射率的数值和振荡特性上略有差别。通过建立薄膜干涉模型,解释了光谱发射率在波长方向上的振荡现象,并结合振荡极值与干涉效应原理计算了合金表面氧化膜厚度,在0.6~8μm范围内测量精度达到±0.3μm。 展开更多
关键词 锆合金 光谱发射率 氧化膜 干涉效应
下载PDF
内压法锆合金薄壁管弹性模量试验研究
19
作者 赵兴华 徐尹杰 +3 位作者 唐韵 包陈 李冬梅 朱可加 《中国测试》 CAS 北大核心 2024年第10期87-92,共6页
薄壁管内压加载下的弹性模量测量具有较大难度,通常采用拉伸法测得的弹性模量来近似代替。该研究基于弹性力学理论,推导薄壁管受内压时的应力和应变公式,进而建立薄壁管受内压时的弹性模量分析模型。完成某型锆合金薄壁管在20~400℃下... 薄壁管内压加载下的弹性模量测量具有较大难度,通常采用拉伸法测得的弹性模量来近似代替。该研究基于弹性力学理论,推导薄壁管受内压时的应力和应变公式,进而建立薄壁管受内压时的弹性模量分析模型。完成某型锆合金薄壁管在20~400℃下的内压试验和拉伸试验,对比分析两种方法得到的弹性模量差异。研究结果表明,该锆合金薄壁管20~400℃的弹性模量在67~96 GPa之间,且弹性模量随温度的增加而减小;基于内压法和拉伸法得到的锆合金薄壁管弹性模量趋势一致,且该变化趋势符合指数函数规律。两种方法所得锆合金薄壁管的弹性模量存在3%的差异,该差异在核电等精密领域不可忽视。因此,该研究建立的基于内压法的弹性模量试验方法具有良好的可行性,可更准确地描述薄壁管在内压状态下的力学性能。 展开更多
关键词 内压法 薄壁管 弹性模量 锆合金
下载PDF
乏燃料棒M5锆合金包壳的透射电镜分析
20
作者 钱进 卞伟 +2 位作者 郭一帆 王鑫 梁政强 《原子能科学技术》 EI CSCD 北大核心 2024年第1期149-156,共8页
压水堆燃料元件的锆合金包壳,在服役期间会经受高中子注量辐照,其微观组织将发生很大变化,从而影响其宏观性能,因此锆合金包壳的中子辐照行为研究一直是核领域的研究重点。但由于材料经中子辐照后具有较强的放射性,相关的实验必须在热... 压水堆燃料元件的锆合金包壳,在服役期间会经受高中子注量辐照,其微观组织将发生很大变化,从而影响其宏观性能,因此锆合金包壳的中子辐照行为研究一直是核领域的研究重点。但由于材料经中子辐照后具有较强的放射性,相关的实验必须在热室内进行,因此针对辐照后燃料包壳微观组织的研究也一直是工作的难点。本文在中国原子能科学研究院热室设施上,通过透射电镜分析手段,研究了M5锆合金包壳材料中子辐照后的微观组织。样品来源于国内商业压水堆AFA3G型乏燃料棒,其燃耗分别为14 GW·d/tU和41 GW·d/tU。从燃料棒上截取长度约10 mm的包壳样品,在热室内完成去芯块与化学清洗,获得空包壳样品,然后通过机械制样方法,制备出?3 mm薄片状包壳基体样品,最后采用电解双喷减薄方法,制备出包壳透射电镜观察分析样品。另外,为对比锆包壳辐照后的组织变化,采用同样方法制备了相同材料的冷态观察分析样品。冷态样品与辐照样品的观察分析结果表明:冷态Zr合金包壳基体组织内部存在原生的第二相粒子,基体内部整体较为干净,纳米析出相稀少,未观察到明显的位错结构;辐照后,基体内原生的第二相粒子尺寸和分布与冷态样品差异不明显,但出现了明显的纳米析出相和高密度位错组织;随着燃耗的增加,纳米析出相尺寸有增加的现象;低燃耗与高燃耗样品位错组织具有相似性,表明在14 GW·d/tU燃耗下,锆合金包壳内由辐照产生的位错组织已基本趋于饱和状态;电子选取衍射结果表明,辐照后,基体内原生的第二相粒子虽存在一些非晶组织,但仍以bcc晶体结构为主,表明在41 GW·d/tU燃耗下,第二相粒子保持了一定的辐照稳定性;另外,第二相的EDS结果表明,随着燃耗的增加,Nb元素的含量有贫化趋势;分析认为,Zr合金经中子辐照,第二相粒子中的Nb原子扩展至Zr基体内,将促进Nb元素以纳米富Nb相形式在Zr基体中析出。 展开更多
关键词 辐照后检验 透射电镜 压水堆 锆合金 燃料棒 中子辐照 热室
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部