The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid dro...The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.展开更多
Beirang brand dyestuff is the product of the Beijing Dyestuff Plant,a large and key chemical enterprise recognized by the Ministry of Chemical Industry, producing dyestuff for production,organic pigment and industrial...Beirang brand dyestuff is the product of the Beijing Dyestuff Plant,a large and key chemical enterprise recognized by the Ministry of Chemical Industry, producing dyestuff for production,organic pigment and industrial sulfuric acid. Some 1,200 tons of State level quality Beirang brand blue pigment is produced in granule and powder form展开更多
Background:Lesion to the retinal pigment epithelium(RPE)is a crucial event in age-related macular degeneration(AMD)development.Although the pathogenesis of this complex disease is poorly understood,sunlight exposure a...Background:Lesion to the retinal pigment epithelium(RPE)is a crucial event in age-related macular degeneration(AMD)development.Although the pathogenesis of this complex disease is poorly understood,sunlight exposure and smoking are major environmental risk factors associated with AMD.High-energy visible blue light(HEV;400-500 nm)is the most energetic and potentially harmful solar wavelengths reaching adults retina.On the other hand,RPE cells can be exposed to a large range of pollutants from cigarette smoke,with polycyclic aromatic hydrocarbons(PAH)being among the most toxic.Some PAH from cigarette smoke can absorb HEV light.This led us hypothesize that in RPE cells,the combination of PAH and HEV could synergize to exacerbate the stress caused by either factor alone.We thus investigate the combined effect of PAH and HEV light in RPE cells.Methods:Confluent RPE immortalized cells(ARPE19)were exposed to nanomolar concentrations of benzo[a]pyrene(BaP)or indeno[1,2,3-cd]pyrene(IcdP).While IcdP efficiently absorbs HEV wavelengths,BaP,the most studied PAH,does not significantly absorb HEV light and was used as a control.BaP or IcdP contaminated ARPE19 were then irradiated with increasing sub-lethal doses of HEV light(150-500 J/cm2)using a setup that mimics the light spectrum normally reaching the retina.Cytotoxicity,apoptosis and reactive oxygen species(ROS)generation were assessed in each condition.Results:In presence of low concentrations of IcdP,sub-lethal amounts of HEV light trigger,in a dose-dependent way,up to 70%of apoptotic cell death.Co-exposure to IcdP and HEV also leads to a synergistic ROS generation in ARPE19 cells,thus inducing oxidative stress.None of these effects were observed with BaP.Efficient inhibition of ROS production by specific antioxidants only decreases death by 20%in cells simultaneously exposed to both IcdP and HEV light.Conclusions:Low concentrations of IcdP synergize with HEV light to induce phototoxicity in ARPE19 cells.An increased oxidative stress results from the interaction between both agents and partially explains the enhanced HEV phototoxicity in IcdP contaminated ARPE19 cells.This suggests that another major mechanism is involved in the synergetic toxicity.For smokers,this synergy between HEV and PAH may accelerate RPE cells loss and contribute to their greater risk of developing AMD.展开更多
The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achi...The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na_(2)CO_(3)/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400℃ for 0.50 h and the second stage at 900℃ for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S_(3)^(−) and S_(2)^(−) radicals. Furthermore, SiO2 (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH_(3)·H_(2)O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.展开更多
The ability to track & trace materials is a key feature in the entire chain, and it ensures circularity principles. Examples from plastic recycling show the enormous added value that analytical technology can have...The ability to track & trace materials is a key feature in the entire chain, and it ensures circularity principles. Examples from plastic recycling show the enormous added value that analytical technology can have for the circular economy. During polymer production and recycling processes, pigments can be added for different purposes;e.g. as colouring agent of the polymeric product but also as tracer for tracking process development and control in the final recycle products versus possible by-products. An analytical method for tracking the pigment Solvent Blue 15 in input materials, in intermediates as well as in recyclates was developed by tracing and quantifying an indicator metal which is copper (Cu). Therefore, suitable digestion procedures and a quantification method by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) were developed and used for measuring the polymeric digests. The method was tested on relevant samples from chemical recycling processes. The background concentrations in base/raw material are in the range of 0.05 - 0.1 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:'Verdana, Helvetica, Arial';"><span style="background-color:#FFFFFF;"><sup>-1<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></sup></span></span> Cu. The processing concentrations are in the range of 4.2 to 28 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu, while the pigment starting material (polyethylene, PE) has a concentration of around 50 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu.展开更多
Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited s...Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.展开更多
Over the last decade,the rapid advances of life sciences have significantly increased public awareness and comprehension of dermatological knowledge,resulting in widespread acceptance of scientific skincare in society...Over the last decade,the rapid advances of life sciences have significantly increased public awareness and comprehension of dermatological knowledge,resulting in widespread acceptance of scientific skincare in society.The scope of photoprotection has expanded to encompass not only ultraviolet radiation but also visible light(including blue light).Furthermore,photoprotection methods have evolved from light blocking to the repair of cellular damage caused by prolonged light exposure via biological signaling pathways.Blue light(BL)is the portion of sunlight between 400 nm(violet)and 500 nm(cyan),that can penetrate deep into biological tissues,with up to 20%reaching subcutaneous tissues.Similar to UV damage,BL can cause oxidative stress,persistent pigmentation,and extracellular matrix degradation,resulting in skin symptoms such as hyperpigmentation,dullness,lack of radiance,uneven skin tone,and wrinkles.This study investigates the clinical manifestations of BL-induced skin photodamages,as well as the underlying biological mechanisms and proposes rational photoaging prevention strategies.展开更多
文摘The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.
文摘Beirang brand dyestuff is the product of the Beijing Dyestuff Plant,a large and key chemical enterprise recognized by the Ministry of Chemical Industry, producing dyestuff for production,organic pigment and industrial sulfuric acid. Some 1,200 tons of State level quality Beirang brand blue pigment is produced in granule and powder form
文摘Background:Lesion to the retinal pigment epithelium(RPE)is a crucial event in age-related macular degeneration(AMD)development.Although the pathogenesis of this complex disease is poorly understood,sunlight exposure and smoking are major environmental risk factors associated with AMD.High-energy visible blue light(HEV;400-500 nm)is the most energetic and potentially harmful solar wavelengths reaching adults retina.On the other hand,RPE cells can be exposed to a large range of pollutants from cigarette smoke,with polycyclic aromatic hydrocarbons(PAH)being among the most toxic.Some PAH from cigarette smoke can absorb HEV light.This led us hypothesize that in RPE cells,the combination of PAH and HEV could synergize to exacerbate the stress caused by either factor alone.We thus investigate the combined effect of PAH and HEV light in RPE cells.Methods:Confluent RPE immortalized cells(ARPE19)were exposed to nanomolar concentrations of benzo[a]pyrene(BaP)or indeno[1,2,3-cd]pyrene(IcdP).While IcdP efficiently absorbs HEV wavelengths,BaP,the most studied PAH,does not significantly absorb HEV light and was used as a control.BaP or IcdP contaminated ARPE19 were then irradiated with increasing sub-lethal doses of HEV light(150-500 J/cm2)using a setup that mimics the light spectrum normally reaching the retina.Cytotoxicity,apoptosis and reactive oxygen species(ROS)generation were assessed in each condition.Results:In presence of low concentrations of IcdP,sub-lethal amounts of HEV light trigger,in a dose-dependent way,up to 70%of apoptotic cell death.Co-exposure to IcdP and HEV also leads to a synergistic ROS generation in ARPE19 cells,thus inducing oxidative stress.None of these effects were observed with BaP.Efficient inhibition of ROS production by specific antioxidants only decreases death by 20%in cells simultaneously exposed to both IcdP and HEV light.Conclusions:Low concentrations of IcdP synergize with HEV light to induce phototoxicity in ARPE19 cells.An increased oxidative stress results from the interaction between both agents and partially explains the enhanced HEV phototoxicity in IcdP contaminated ARPE19 cells.This suggests that another major mechanism is involved in the synergetic toxicity.For smokers,this synergy between HEV and PAH may accelerate RPE cells loss and contribute to their greater risk of developing AMD.
基金supported by the National Key Research and Development Program of China(2017YFD0800301)Liaoning Province Education Administration(No.LJ2020008,LQ2020023,and LQ2020027)Program for Liaoning Innovative Research Team in University(LT2020016).
文摘The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na_(2)CO_(3)/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400℃ for 0.50 h and the second stage at 900℃ for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S_(3)^(−) and S_(2)^(−) radicals. Furthermore, SiO2 (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH_(3)·H_(2)O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.
文摘The ability to track & trace materials is a key feature in the entire chain, and it ensures circularity principles. Examples from plastic recycling show the enormous added value that analytical technology can have for the circular economy. During polymer production and recycling processes, pigments can be added for different purposes;e.g. as colouring agent of the polymeric product but also as tracer for tracking process development and control in the final recycle products versus possible by-products. An analytical method for tracking the pigment Solvent Blue 15 in input materials, in intermediates as well as in recyclates was developed by tracing and quantifying an indicator metal which is copper (Cu). Therefore, suitable digestion procedures and a quantification method by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) were developed and used for measuring the polymeric digests. The method was tested on relevant samples from chemical recycling processes. The background concentrations in base/raw material are in the range of 0.05 - 0.1 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:'Verdana, Helvetica, Arial';"><span style="background-color:#FFFFFF;"><sup>-1<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></sup></span></span> Cu. The processing concentrations are in the range of 4.2 to 28 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu, while the pigment starting material (polyethylene, PE) has a concentration of around 50 mg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">·</span>kg<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup>-1</sup></span><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"></span></span> Cu.
基金Applied Basic Research Foundation of Yunnan Province(Grant No.202101AU070144)the Joint Agricultural Project of Yunnan Province(Grant No.202101BD070001-127).
文摘Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.
文摘Over the last decade,the rapid advances of life sciences have significantly increased public awareness and comprehension of dermatological knowledge,resulting in widespread acceptance of scientific skincare in society.The scope of photoprotection has expanded to encompass not only ultraviolet radiation but also visible light(including blue light).Furthermore,photoprotection methods have evolved from light blocking to the repair of cellular damage caused by prolonged light exposure via biological signaling pathways.Blue light(BL)is the portion of sunlight between 400 nm(violet)and 500 nm(cyan),that can penetrate deep into biological tissues,with up to 20%reaching subcutaneous tissues.Similar to UV damage,BL can cause oxidative stress,persistent pigmentation,and extracellular matrix degradation,resulting in skin symptoms such as hyperpigmentation,dullness,lack of radiance,uneven skin tone,and wrinkles.This study investigates the clinical manifestations of BL-induced skin photodamages,as well as the underlying biological mechanisms and proposes rational photoaging prevention strategies.