期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Zonal disintegration phenomenon in rock mass surrounding deep tunnels 被引量:9
1
作者 WU Hao FANG Qin GUO Zhi-kun 《Journal of China University of Mining and Technology》 EI 2008年第2期187-193,共7页
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri... Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass. 展开更多
关键词 block-hierarchical structure zonal disintegration phenomenon enclosing rock mass around deep tunnel equivalent material stress concentration coefficient
下载PDF
Mechanism of zonal disintegration phenomenon in enclosing rock mass around deep tunnels
2
作者 吴昊 郭志昆 +2 位作者 方秦 张亚栋 柳锦春 《Journal of Central South University》 SCIE EI CAS 2009年第2期303-311,共9页
In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent materia... In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass. 展开更多
关键词 zonal disintegration phenomenon (ZDP) block-hierarchical structure deep tunnel creep instability stress concentration coefficient
下载PDF
THE ZONAL DISINTEGRATION MECHANISM OF SURROUNDING ROCK AROUND DEEP SPHERICAL TUNNELS UNDER HYDROSTATIC PRESSURE CONDITION: A NON-EUCLIDEAN CONTINUUM DAMAGE MODEL 被引量:4
3
作者 Xiaoping Zhou Qinghong Hou +1 位作者 Qihu Qian Yongxing Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2013年第4期373-387,共15页
A new non-Euclidean continuum damage model is proposed to investigate the zonal disintegration phenomenon of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition as well as the tota... A new non-Euclidean continuum damage model is proposed to investigate the zonal disintegration phenomenon of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition as well as the total elastic stress field distributions.The elastic stress fields of the surrounding rocks around deep spherical tunnels under hydrostatic pressure condition axe obtained.If the elastic stresses of the surrounding rocks satisfy the strength criterion of the deep rock masses,the number,size and location of fractured and nonfractured zones are determined.The effect of physico-mechanical parameters of the surrounding rocks on the zonal disintegration phenomenon is studied and numerical computation is carried out.It is found from numerical results that the number,size and location of fractured and non-fractured zones are sensitive to the physico-mechanical parameters of the surrounding rocks. 展开更多
关键词 a new non-Euclidean continuum damage model the zonal disintegration phenomenon deep spherical tunnels hydrostatic pressure condition fractured and nonfractured zones the strength criterion of the deep rock masses
原文传递
THE EFFECTS OF THREE-DIMENSIONAL PENNY-SHAPED CRACKS ON ZONAL DISINTEGRATION OF THE SURROUNDING ROCK MASSES AROUND A DEEP CIRCULAR TUNNEL 被引量:2
4
作者 Xiaoping Zhou Qihu Qian Hanfei Song 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2015年第6期722-734,共13页
In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on... In this study, it was assumed that three-dimensional penny-shaped cracks existed in deep rock masses. A new non-Euclidean model was established, in which the effects of penny- shaped cracks and axial in-situ stress on zonal disintegration of deep rock masses were taken into account. Based on the non-Euclidean model, the stress intensity factors at tips of the penny- shaped cracks were determined. The strain energy density factor was applied to investigate the occurrence of fractured zones. It was observed from the numerical results that the magnitude and location of fractured zones were sensitive to micro- and macro-mechanical parameters, as well as the value of in-situ stress. The numerical results were in good agreement with the experimental data. 展开更多
关键词 deep rock masses containing penny-shaped cracks the non-Euclidean model axial in-situ stress fractured zones zonal disintegration phenomenon deep circular tunnel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部