This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base ...This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base metal, and with lower carbon content and slightly higher alloy elements content compared to the first one. Test plates then exerted three different pre-heat and post-heat treatments on both groups. The three types of heat treatments were alternatively without pre-heat and post-heat, with pre-heat only, and finally with pre-heat and post-heat. Tensile, side bends and impact tests (for weld zone and HAZ) have been conducted. Results show that using low-carbon filler wire along with pre- and post-heat resulted in outstanding mechanical properties.展开更多
The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that th...The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that the BG110E expansion pipe exhibits uniform elongation of more than 19%.Moreover,after undergoing expan-sion deformation,its strength,toughness,and plasticity are found to meet the stringent requirements of the P110 pipe.The microstructure of this high-strength expansion pipe,which has a strength of 110 ksi(1 ksi=6.895 MPa),consists of tempered martensite,ferrite,retained austenite,and granular bainite.The propotion of retained austenite reaches up to 12%,ensuring high plasticity and the occurrence of the transformation-induced plasticity effect during the deformation process.Consequently,it enhances the coordinated deformation ability between different phases,which significantly improves the internal yield pressure of the BG110E high-strength expansion pipe in turn.展开更多
The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions h...The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine Ni Ti particles precipitate from the supersaturated V-matrix solid solution at 750 °C, increase in quantity until 800 °C, and then dissolve back into the V-matrix at 850 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 850 °C. The microstructure containing small Ni Ti precipitates resulting from the treatment of 18 h at800 °C has a good soft condition for workability. PFZ formed at the grain boundary of V-matrix during heat treatment was observed. Vacancies depletion in V-matrix maybe led to the formation of PFZ.展开更多
文摘This research intends to find out the optimal mechanical properties of AISI 4130 steel welded by the GTAW process. Six test plates were joined by two types of filler wire with similar chemical composition to the base metal, and with lower carbon content and slightly higher alloy elements content compared to the first one. Test plates then exerted three different pre-heat and post-heat treatments on both groups. The three types of heat treatments were alternatively without pre-heat and post-heat, with pre-heat only, and finally with pre-heat and post-heat. Tensile, side bends and impact tests (for weld zone and HAZ) have been conducted. Results show that using low-carbon filler wire along with pre- and post-heat resulted in outstanding mechanical properties.
文摘The BG110E high-strength expansion pipe was developed using medium manganese steel and subjected to a two-phase zone heat treatment process.Mechanical properties and microstructure analysis results have proven that the BG110E expansion pipe exhibits uniform elongation of more than 19%.Moreover,after undergoing expan-sion deformation,its strength,toughness,and plasticity are found to meet the stringent requirements of the P110 pipe.The microstructure of this high-strength expansion pipe,which has a strength of 110 ksi(1 ksi=6.895 MPa),consists of tempered martensite,ferrite,retained austenite,and granular bainite.The propotion of retained austenite reaches up to 12%,ensuring high plasticity and the occurrence of the transformation-induced plasticity effect during the deformation process.Consequently,it enhances the coordinated deformation ability between different phases,which significantly improves the internal yield pressure of the BG110E high-strength expansion pipe in turn.
基金China Scholarship Council for the financial support for Peng Jiang’s study at CSIRO
文摘The microstructure, hardness, and precipitate free zones(PFZ) of V55Ti30Ni15 alloys during heat treatment have been investigated in this study. The microstructure resulting from different heat treatment conditions has a great influence on hardness. The microstructure resulting from different heat treatment conditions has a great influence on hardness. Fine Ni Ti particles precipitate from the supersaturated V-matrix solid solution at 750 °C, increase in quantity until 800 °C, and then dissolve back into the V-matrix at 850 °C. The resultant hardness decreases with temperature until 800 °C, and then increases from 800 to 850 °C. The microstructure containing small Ni Ti precipitates resulting from the treatment of 18 h at800 °C has a good soft condition for workability. PFZ formed at the grain boundary of V-matrix during heat treatment was observed. Vacancies depletion in V-matrix maybe led to the formation of PFZ.