The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed we...The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed well with the phosphate movement in rhizosphere and phosphate uptake by plant. The relativeaccumulation zone of phosphate within 0.5 mm apart from the root surface developed at the 15th day or soafter cultivating wheat or maize since the root phosphate secretion increased gradually in this stage. Thephosphate distribution in the soil-root interface zone against the growing time (t) and the distance from theroot plane (x) could be described by the non-linear regression equation with the third powers of x and t.展开更多
The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir...The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir relations with phosphate uptake by plant as well as transpiration rate (atmosphere humidity). It wasfound that although the phosphate in the soilroot interface zone was of depletive distribution as a functionC/Co = ax ̄b(C/Co is the relative content of fertilizer phosphate in a distance from the root surface x, aand b are the regression constants), and a relative accumulation zone of phosphate within 0.5 mm near theroot surface was often observed especially in the heavier texture soils because of root phosphate secretion.The depletion intensity of phosphate in the soil-root interface zone was in agreement with the phosphateuptake by plants under two humidities very well. However, the effects of air humidity on characteristics ofthe phosphate distribution near wheat or maize root surface were different. Wheat grew better under loweratmosphere humidity while maize, under higher humidity, which caused a more intensive uptake and thusa stronger depletion of phosphate in the rhizosphere. Moreover, the depletion intensity was greater by thebottom or the middle part of wheat roots and by the top or the middle part of maize roots. The depletivedistribution of phosphate in the rhizosphere soil and the relative contribution of phosphate diffusion to plant,which was more than 98% in the cultural experiments, indicated that diffusion was a major process forphosphorus supply to plants.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional the...The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.展开更多
An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in ...AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.展开更多
Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heter...Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heterogeneity across territorial spaces.As a super megacity in western China,Chengdu’s rapid urbanization has driven the evolution of U-S-R spaces,resulting in a sequential structure.To promote the high-quality spatial development of urban-rural region in a structured and efficient manner,it is essential to con-duct a scientific examination of the multidimensional interconnection within the U-S-RTZ framework.By proposing a novel identifica-tion method of U-S-RTZ and taking Chengdu,China as a case study,grounded in a blender of natural and humanistic factors,this study quantitatively delineated and explored the spatial evolutions of U-S-RTZ and stated the optimization orientation and sustainable devel-opment strategies of the production-living-ecological spaces along the U-S-R gradients.The results show that:1)it is suitable for the quantitative analysis of U-S-RTZ by established three-dimensional identification system in this study.2)In 1990-2020,the urban-sub-urban transition zones(U-STZ)in Chengdu have continuously undergone a substantial increase,and the scale of the suburban-rural transition zones(S-RTZ)has continued to expand slightly,while the space of rural-ecological transition zones(R-ETZ)has noticeably compressed.3)The landuse dynamics within U-S-RTZ has gradually increased in 1990-2020.The main direction of landuse transition was from farmland to construction land or woodlands,with the expansion of construction land being the most significant.4)R-ETZ primarily focus on ecological functions,and there is a trade-off relationship between the production-ecological function within the S-RTZ,and in the U-STZ,production-living composite functions are prioritized.This study emphasizes the importance of elastic planning and precise governance within the U-S-RTZ in a rapid urbanization region,particularly highlighting the role of suburbs as landscape corridors and service hubs in urban-rural integration.It elucidates to the practical implications for achieving high-quality development of integrated U-S-R territorial spaces.展开更多
A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,in...A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.展开更多
In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase wa...In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase was preferentially accommodated within shear zones and caused the generation of shear bands, implying a non-coaxial component of deformation, the end of this stage deformation was marked by the development of kink-bands. In the vicinity of Zagros suture zone, the kink angle increased from 40° to 60°, and the kink-bands was converted to chevron folds. In this region, the external(α) and internal(β) angular ratio is α/β ≠ 1 and kink angle increased, and deformation occurred with 10% to 30% volume loss. Farther from the suture zone in the east, α/β = 1;and total volume was constant or increased by 5% to 10%. Kink-bands kinematic analysis in the study area revealed this structures were sensitive to deformation conditions and components such that, with decreasing distance to the Zagros suture zone, shearing and rotation increased, a high kinematic vorticity dominated, and volume loss occurred during deformation.展开更多
Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provid...Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties.展开更多
Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable e...Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable environmental protection and economic development.In this study,we reviewed the history of coastal zone planning since its birth in the 1950s based on the literature retrieved from the Web of Science(Core Collection)from 2000–2023,then summarized the tools and spatial allocation methods commonly used in the planning process,and finally proposed potential solutions to the challenges faced.The results show that after decades of development,coastal zone planning has changed from a decentralized activity to a targeted and integrated one,with an increasing emphasis on the ecosystem approach and the use of multiple planning tools.Spatial analysis techniques and environmental modelling software have become increasingly popular.Linear programming and overlay analysis are common approaches when performing spatial optimization,but land-sea interactions and planning in the marine parts still lack in-depth analysis and practical experience.We are also aware that the challenges posed by the integration of administrative hierarchies,scoping and conservation objectives,stakeholder participation,consideration of social dimensions,and climate change are pervasive throughout the planning process.There is an urgent need to develop more flexible and accurate spatial modelling tools,as well as more efficient participatory methods,and to focus on the holistic nature of the land-sea system to create more resilient and sustainable coastal zones.展开更多
BACKGROUND Marginal zone lymphoma(MZL)is an indolent subtype of non-Hodgkin lymphoma(NHL),which is rare clinically with severe rashes as the initial symptom.CASE SUMMARY This study reports a case of MZL with generaliz...BACKGROUND Marginal zone lymphoma(MZL)is an indolent subtype of non-Hodgkin lymphoma(NHL),which is rare clinically with severe rashes as the initial symptom.CASE SUMMARY This study reports a case of MZL with generalized skin rashes accompanied by pruritus and purulent discharge.First-line treatment with rituximab combined with zanubrutinib had poor effects.However,after switching to obinutuzumab combined with zanubrutinib,the case was alleviated,and the rashes disappeared.CONCLUSION For patients with advanced stage MZL not benefiting from type I anti-CD20 monoclonal antibody(mAb)combination therapy,switching to a type II anti-CD20 mAb combination regimen may be considered.This approach may provide a new perspective in the treatment of MZL.展开更多
Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we pr...Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates(ERZPs) and the advantage of spiral zone plates(SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates(ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate;therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices,ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.展开更多
Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature fiel...Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.展开更多
The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in t...The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.展开更多
The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and co...The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).展开更多
The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To ad...The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
文摘The depletion rate of phosphate in the soil-root interface zone increased along with growth and phosphateuptake of wheat or maize, which indicated that the phosphate distribution in soil near the root surfaceagreed well with the phosphate movement in rhizosphere and phosphate uptake by plant. The relativeaccumulation zone of phosphate within 0.5 mm apart from the root surface developed at the 15th day or soafter cultivating wheat or maize since the root phosphate secretion increased gradually in this stage. Thephosphate distribution in the soil-root interface zone against the growing time (t) and the distance from theroot plane (x) could be described by the non-linear regression equation with the third powers of x and t.
文摘The experiments were conducted in the artificial climate laboratory using  ̄(32)P labelled soil and soil-rootplane system to investigate phosphate distribution and its movement in the soil-root interface zone andtheir relations with phosphate uptake by plant as well as transpiration rate (atmosphere humidity). It wasfound that although the phosphate in the soilroot interface zone was of depletive distribution as a functionC/Co = ax ̄b(C/Co is the relative content of fertilizer phosphate in a distance from the root surface x, aand b are the regression constants), and a relative accumulation zone of phosphate within 0.5 mm near theroot surface was often observed especially in the heavier texture soils because of root phosphate secretion.The depletion intensity of phosphate in the soil-root interface zone was in agreement with the phosphateuptake by plants under two humidities very well. However, the effects of air humidity on characteristics ofthe phosphate distribution near wheat or maize root surface were different. Wheat grew better under loweratmosphere humidity while maize, under higher humidity, which caused a more intensive uptake and thusa stronger depletion of phosphate in the rhizosphere. Moreover, the depletion intensity was greater by thebottom or the middle part of wheat roots and by the top or the middle part of maize roots. The depletivedistribution of phosphate in the rhizosphere soil and the relative contribution of phosphate diffusion to plant,which was more than 98% in the cultural experiments, indicated that diffusion was a major process forphosphorus supply to plants.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金financially supported by the National Key R&D Program of China(No.2022YFB3705300)the National Natural Science Foundation of China(Nos.U1960204 and 51974199)the Postdoctoral Fellowship Program of CPSF(No.GZB20230515)。
文摘The infamous type Ⅳ failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants.In this work,the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling,i.e.,normalizing,cold rolling,and tempering (NCT),which was developed to improve the creep strength of the FGHAZ in G115 steel weldments.The NCT treatment effectively promoted the dissolution of preformed M_(23)C_(6)particles and relieved the boundary segregation of C and Cr during welding thermal cycling,which accelerated the dispersed reprecipitation of M_(23)C_(6) particles within the fresh reaustenitized grains during post-weld heat treatment.In addition,the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations.As a result,the interacting actions between precipitates,dislocations,and boundaries during creep were reinforced considerably.Following this strategy,the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%,which can further push the application of G115 steel in USC power plants.
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
基金Supported by Education Department Foundation of Sichuan Province(No.15ZA0262).
文摘AIM:To present the 1-year results of a prospective cohort study investigating the efficacy,potential mechanism,and safety of orthokeratology(ortho-k)with different back optic zone diameters(BOZD)for myopia control in children.METHODS:This randomized clinical study was performed between Dec.2020 and Dec.2021.Participants were randomly assigned to three groups wearing ortho-k:5 mm BOZD(5-MM group),5.5 mm BOZD(5.5-MM group),and 6 mm BOZD(6-MM group).The 1-year data were recorded,including axial length,relative peripheral refraction(RPR,measured by multispectral refractive topography,MRT),and visual quality.The contrast sensitivity(CS)was evaluated by CSV-1000 instrument with spatial frequencies of 3,6,12,and 18 cycles/degree(c/d);the corneal higher-order aberrations(HOAs)were measured by iTrace aberration analyzer.The one-way ANOVA was performed to assess the differences between the three groups.The correlation between the change in AL and RPR was calculated by Pearson’s correlation coefficient.RESULTS:The 1-year results of 20,21,and 21 subjects in the 5-MM,5.5-MM,and 6-MM groups,respectively,were presented.There were no statistical differences in baseline age,sex,or ocular parameters between the three groups(all P>0.05).At the 1-year visit,the 5-MM group had lower axial elongation than the 6-MM group(0.07±0.09 vs 0.18±0.11 mm,P=0.001).The 5-MM group had more myopic total RPR(TRPR,P=0.014),with RPR in the 15°–30°(RPR 15–30,P=0.015),30°–45°(RPR 30–45,P=0.011),temporal(RPR-T,P=0.008),and nasal area(RPR-N,P<0.001)than the 6-MM group.RPR 15–30 in the 5.5-MM group was more myopic than that in the 6-MM group(P=0.002),and RPR-N in the 5-MM group was more myopic than that in the 5.5-MM group(P<0.001).There were positive correlations between the axial elongation and the change in TRPR(r=0.756,P<0.001),RPR 15–30(r=0.364,P=0.004),RPR 30–45(r=0.306,P=0.016),and RPR-N(r=0.253,P=0.047).The CS decreased at 3 c/d(P<0.001),and the corneal HOAs increased in the 5-MM group(P=0.030).CONCLUSION:Ortho-k with 5 mm BOZD can control myopia progression more effectively.The mechanism may be associated with greater myopic shifts in RPR.
基金Under the auspices of National Natural Science Foundation of China(No.41930651)Sichuan Science and Technology Program(No.2023NSFSC1979)。
文摘Urban-suburban-rural(U-S-R)zones exhibit distinctive transitional characteristics in interaction between human and nature.U-S-R transition zones(U-S-RTZ)are also highlighting the function diversity and landscape heterogeneity across territorial spaces.As a super megacity in western China,Chengdu’s rapid urbanization has driven the evolution of U-S-R spaces,resulting in a sequential structure.To promote the high-quality spatial development of urban-rural region in a structured and efficient manner,it is essential to con-duct a scientific examination of the multidimensional interconnection within the U-S-RTZ framework.By proposing a novel identifica-tion method of U-S-RTZ and taking Chengdu,China as a case study,grounded in a blender of natural and humanistic factors,this study quantitatively delineated and explored the spatial evolutions of U-S-RTZ and stated the optimization orientation and sustainable devel-opment strategies of the production-living-ecological spaces along the U-S-R gradients.The results show that:1)it is suitable for the quantitative analysis of U-S-RTZ by established three-dimensional identification system in this study.2)In 1990-2020,the urban-sub-urban transition zones(U-STZ)in Chengdu have continuously undergone a substantial increase,and the scale of the suburban-rural transition zones(S-RTZ)has continued to expand slightly,while the space of rural-ecological transition zones(R-ETZ)has noticeably compressed.3)The landuse dynamics within U-S-RTZ has gradually increased in 1990-2020.The main direction of landuse transition was from farmland to construction land or woodlands,with the expansion of construction land being the most significant.4)R-ETZ primarily focus on ecological functions,and there is a trade-off relationship between the production-ecological function within the S-RTZ,and in the U-STZ,production-living composite functions are prioritized.This study emphasizes the importance of elastic planning and precise governance within the U-S-RTZ in a rapid urbanization region,particularly highlighting the role of suburbs as landscape corridors and service hubs in urban-rural integration.It elucidates to the practical implications for achieving high-quality development of integrated U-S-R territorial spaces.
基金This research was supported by the Major Scientific and Technological Projects of CNPC under grant ZD2019-183-006the National Natural Science Foundation of China(42072234).The authors would like to appreciate all the people,who supported the data,testing,and analyses.Many thanks to the anonymous reviewers,whose comments improve the quality of our manuscript.
文摘A fault accommodation zone is a type of structure that is defined as regulating displacement and strain between faults structure.Increasing numbers of fault accommodation zones are being identified in graben basins,indicating the potential exploration target and petroleum accumulation areas.This study aims to analyze the formation mechanism and development of fault accommodation zones under combined stress by a numerical simulation method considering geomechanical modeling.Using three-dimensional(3-D)seismic interpretation and fractal dimension method,exampled with the Dongxin fault zone,the fault activity and fault combination pattern were conducted to quantitatively characterize the activity difference in fault accommodation zones.Combined with mechanical experiment test,a geomehcanical model was established for fault accommodation zones in a graben basin.Integrating the paleostress numerical simulations and structural physical simulation experiment,the developmental characteristics and genetic mechanism of fault accommodation zones were summarized.Influenced by multi movements and combined stresses,three significant tectonic evolution stages of the Dongxing Fault Zone(DXFZ)were distinguished:During the E_(s)^(3)sedimentary period,the large difference in the stress,strain,and rupture distribution in various faults were significant,and this stage was the key generation period for the prototype of the DXFZ,including the FAZ between large-scale faults.During the E_(s)^(2)sedimentary period,the EW-trending symmetric with opposite dipping normal faults and the NE-SW trending faults with large scale were furtherly developed.The junction area of two secondary normal faults were prone to be ruptured,performing significant period for inheriting and developing characteristics of fault accommodation zones.During the Es1 sedimentary period,the high-order faults in the DXFZ exhibited the obvious fault depressions and strike-slip activity,and the fault accommodation zones were furtherly inherited and developed.This stage was the molded and formative period of the FAZ,the low-order faults,and the depression in the DXFZ.
文摘In the internal parts of the Zagros collision zone, several deformation phases have been superimposed. The early deformation phase caused the development of a penetrative foliation. The late-stage deformation phase was preferentially accommodated within shear zones and caused the generation of shear bands, implying a non-coaxial component of deformation, the end of this stage deformation was marked by the development of kink-bands. In the vicinity of Zagros suture zone, the kink angle increased from 40° to 60°, and the kink-bands was converted to chevron folds. In this region, the external(α) and internal(β) angular ratio is α/β ≠ 1 and kink angle increased, and deformation occurred with 10% to 30% volume loss. Farther from the suture zone in the east, α/β = 1;and total volume was constant or increased by 5% to 10%. Kink-bands kinematic analysis in the study area revealed this structures were sensitive to deformation conditions and components such that, with decreasing distance to the Zagros suture zone, shearing and rotation increased, a high kinematic vorticity dominated, and volume loss occurred during deformation.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)the National Natural Science Foundation of China(No.U2039204)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB23B22).
文摘Large earthquakes frequently occur along complex fault systems.Understanding seismic rupture and long-term fault evolution requires constraining the geometric and material properties of fault zone structures.We provide a comprehensive overview of recent advancements in seismological methods used to study fault zone structures,including seismic tomography,fault zone seismic wave analysis,and seismicity analysis.Observational conditions limit our current ability to fully characterize fault zones,for example,insufficient imaging resolution to discern small-scale anomalies,incomplete capture of crucial fault zone seismic waves,and limited precision in event location accuracy.Dense seismic arrays can overcome these limitations and enable more detailed investigations of fault zone structures.Moreover,we present new insights into the structure of the Anninghe-Xiaojiang fault zone in the southeastern margin of the Qinghai-Xizang Plateau based on data collected from a dense seismic array.We found that utilizing a dense seismic array can identify small-scale features within fault zones,aiding in the interpretation of fault zone geometry and material properties.
基金Under the auspices of National Key R&D Plan (No.2022YFB3903604)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2023060)Key Project of Innovation LREIS (No.KPI001)。
文摘Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable environmental protection and economic development.In this study,we reviewed the history of coastal zone planning since its birth in the 1950s based on the literature retrieved from the Web of Science(Core Collection)from 2000–2023,then summarized the tools and spatial allocation methods commonly used in the planning process,and finally proposed potential solutions to the challenges faced.The results show that after decades of development,coastal zone planning has changed from a decentralized activity to a targeted and integrated one,with an increasing emphasis on the ecosystem approach and the use of multiple planning tools.Spatial analysis techniques and environmental modelling software have become increasingly popular.Linear programming and overlay analysis are common approaches when performing spatial optimization,but land-sea interactions and planning in the marine parts still lack in-depth analysis and practical experience.We are also aware that the challenges posed by the integration of administrative hierarchies,scoping and conservation objectives,stakeholder participation,consideration of social dimensions,and climate change are pervasive throughout the planning process.There is an urgent need to develop more flexible and accurate spatial modelling tools,as well as more efficient participatory methods,and to focus on the holistic nature of the land-sea system to create more resilient and sustainable coastal zones.
文摘BACKGROUND Marginal zone lymphoma(MZL)is an indolent subtype of non-Hodgkin lymphoma(NHL),which is rare clinically with severe rashes as the initial symptom.CASE SUMMARY This study reports a case of MZL with generalized skin rashes accompanied by pruritus and purulent discharge.First-line treatment with rituximab combined with zanubrutinib had poor effects.However,after switching to obinutuzumab combined with zanubrutinib,the case was alleviated,and the rashes disappeared.CONCLUSION For patients with advanced stage MZL not benefiting from type I anti-CD20 monoclonal antibody(mAb)combination therapy,switching to a type II anti-CD20 mAb combination regimen may be considered.This approach may provide a new perspective in the treatment of MZL.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174350,12275253,and 12275250)the Program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics (Grant No.6142A04200107)the National Natural Science Foundation,Youth Fund (Grant No.12105268)。
文摘Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates(ERZPs) and the advantage of spiral zone plates(SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates(ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate;therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices,ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.
基金Supported by National High Technology Research and Development Program of China(863 Program,Grant No.2015AA042503)K.C.Wong Education Foundation.
文摘Improvement of fabrication efficiency and part performance was the main challenge for the large-scale powder bed fusion(PBF)process.In this study,a dynamic monitoring and feedback system of powder bed temperature field using an infrared thermal imager has been established and integrated into a four-laser PBF equipment with a working area of 2000 mm×2000 mm.The heat-affected zone(HAZ)temperature field has been controlled by adjusting the scanning speed dynamically.Simultaneously,the relationship among spot size,HAZ temperature,and part performance has been established.The fluctuation of the HAZ temperature in four-laser scanning areas was decreased from 30.85℃to 17.41℃.Thus,the consistency of the sintering performance of the produced large component has been improved.Based on the controllable temperature field,a dynamically adjusting strategy for laser spot size was proposed,by which the fabrication efficiency was improved up to 65.38%.The current research results were of great significance to the further industrial applications of large-scale PBF equipment.
基金the National Key Research and Development Program of China(2020YFA0608403)the National Natural Science Foundation of China(42171083)the Natural Science Foundation of Gansu Province,China(23JRRA601).
文摘The desert-oasis transition zone(DOTZ)serves as a buffer area between the desert and oasis.Understanding its wind field characteristics is of great significance for the prevention and control of aeolian disasters in the oasis.In this study,we used meteorological data during 2013–2019 from the portable meteorological stations at five sites(site A on the edge of the oasis,sites B,C,and D in the DOTZ,and site O in the desert)in Dunhuang,China to analyze the near-surface wind field characteristics and their causes,as well as to reveal the key role of the DOTZ in oasis protection.The results showed that the mean wind speed,frequency of sand-driving wind,and directional variability of wind decreased from west to east within the DOTZ,and wind speed was significantly affected by air temperature.The terrain influenced the prevailing winds in the region,mainly from northeast and southwest.Only some areas adjacent to the oasis were controlled by southeasterly wind.This indicated that the near-surface wind field characteristics of the DOTZ were caused by the combined effects of local terrain and surface hydrothermal difference.At site D,the annual drift potential(DP)was 24.95 vector units(VU),indicating a low wind energy environment,and the resultant drift direction(RDD)showed obvious seasonal differences.Additionally,the DOTZ played an important buffering role between the desert and oasis.Compared with the desert,the mean wind speed in the oasis decreased by 64.98%,and the prevailing wind direction was more concentrated.The results of this study will be useful in interpreting the aeolian activity of the DOTZ in Dunhuang.
基金The National Natural Science Foundation of China under contract Nos 41875061 and 41775165.
文摘The mesoscale eddy(ME)has a significant influence on the convergence effect in deep-sea acoustic propagation.This paper use statistical approaches to express quantitative relationships between the ME conditions and convergence zone(CZ)characteristics.Based on the Gaussian vortex model,we construct various sound propagation scenarios under different eddy conditions,and carry out sound propagation experiments to obtain simulation samples.With a large number of samples,we first adopt the unified regression to set up analytic relationships between eddy conditions and CZ parameters.The sensitivity of eddy indicators to the CZ is quantitatively analyzed.Then,we adopt the machine learning(ML)algorithms to establish prediction models of CZ parameters by exploring the nonlinear relationships between multiple ME indicators and CZ parameters.Through the research,we can express the influence of ME on the CZ quantitatively,and achieve the rapid prediction of CZ parameters in ocean eddies.The prediction accuracy(R)of the CZ distance(mean R:0.9815)is obviously better than that of the CZ width(mean R:0.8728).Among the three ML algorithms,Gradient Boosting Decision Tree has the best prediction ability(root mean square error(RMSE):0.136),followed by Random Forest(RMSE:0.441)and Extreme Learning Machine(RMSE:0.518).
基金supported by the State Major Program of National Natural Science Foundation of China(52090082)the National Key Research and Development Program of China(2022YFB2602200)the National Natural Science Foundation of China(52178423 and 52378398).
文摘The rail transit in sulfate-rich areas faces the combined effects of stray current and salt corrosion;however,the sulfate ion transport and concrete degradation mechanisms under such conditions are still unclear.To address this issue,novel sulfate transport and mesoscale splitting tests were designed,with a focus on considering the differences between the interfacial transition zone(ITZ)and cement matrix.Under the influence of stray current,the ITZ played a pivotal role in regulating the transport and mechanical failure processes of sulfate attack,while the tortuous and blocking effects of aggregates almost disappeared.This phenomenon was termed the“stray current-induced ITZ effect.”The experimental data revealed that the difference in sulfate ion transport attributed to the ITZ ranged from 1.90 to 2.31 times,while the difference in splitting strength ranged from 1.56 to 1.64 times.Through the real-time synchronization of splitting experiments and microsecond-responsive particle image velocimetry(PIV)technology,the mechanical properties were exposed to the consequences of the stray currentinduced ITZ effect.The number of splitting cracks in the concrete increased,rather than along the central axis,which was significantly different from the conditions without stray current and the ideal Brazilian disk test.Furthermore,a sulfate ion mass transfer model that incorporates reactivity and electrodiffusion was meticulously constructed.The embedded finite element calculation exhibited excellent agreement with the experimental results,indicating its reliability and accuracy.Additionally,the stress field was determined utilizing analytical methods,and the mechanism underlying crack propagation was successfully obtained.Compared to the cement matrix,a stray current led to more sulfates,more microstructure degradation,and greater increases in thickness and porosity in the ITZ,which was considered to be the essence of the stray current-induced ITZ effect.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.