期刊文献+
共找到427篇文章
< 1 2 22 >
每页显示 20 50 100
Characteristics and Functions of Cooperative Economic Organizations for Water-saving Irrigation in Agricultural Development in Arid Areas 被引量:4
1
作者 吴开波 朱美玲 +1 位作者 董新光 李金 《Agricultural Science & Technology》 CAS 2011年第12期1979-1982,共4页
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr... Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation. 展开更多
关键词 Cooperative economic organizations water-saving irrigation CHARACTERISTICS FUNCTIONS
下载PDF
Application of Automatic Water-saving Irrigation System in Roof Gardens 被引量:1
2
作者 周炼 张美 《Journal of Landscape Research》 2009年第4期75-79,共5页
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa... Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature. 展开更多
关键词 AUTOMATIC irrigation water-saving irrigation ROOF GARDEN
下载PDF
Design and Construction of Rainwater Harvesting and Water-saving Irrigation System of Toona sinensis on Mountain Slopes 被引量:1
3
作者 尹庆珍 谷成铜 +1 位作者 张立永 谷明月 《Agricultural Science & Technology》 CAS 2017年第11期2163-2167,2178,共6页
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ... In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3. 展开更多
关键词 Toona sinensis in mountain slopes Rainwater harvesting and water-saving irrigation system Design and construction
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
4
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:18
5
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
6
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving irrigation POTENTIAL Benefi
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
7
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s WATER demand Cotton’s WATER consumption water-saving BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
Study on the Suitable Water-Saving Irrigation Technology for Mining Areas in the Northwestern Arid Desert Regions in China
8
作者 Yanping Liu Hao Rong +1 位作者 Dan Shan Zhanqi Liang 《Journal of Geoscience and Environment Protection》 2020年第10期127-133,共7页
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi... <div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div> 展开更多
关键词 Mining Areas Vegetation Restoration Side Slope water-saving irrigation STABILITY
下载PDF
Popularization of China's Water-Saving Irrigation equipment
9
《China Today》 2000年第7期50-51,共2页
关键词 Popularization of China’s water-saving irrigation equipment
下载PDF
Applying a salinity response function and zoning saline land for three fi eld crops: a case study in the Hetao Irrigation District, Inner Mongolia, China 被引量:3
10
作者 TONG Wen-jie CHEN Xiao-li +4 位作者 WEN Xin-ya CHEN Fu ZHANG Hai-lin CHU Qing-quan Shadrack Batsile Dikgwatlhe 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期178-189,共12页
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L... Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District. 展开更多
关键词 salinity tolerance modified discount function ecological zoning Hetao irrigation District
下载PDF
What determines irrigation efficiency when farmers face extreme weather events? A field survey of the major wheat producing regions in China 被引量:5
11
作者 SONG Chun-xiao Les Oxley MA Heng-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1888-1899,共12页
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir... Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters. 展开更多
关键词 irrigation efficiency determinants irrigation facilities water-saving techniques extreme weather events
下载PDF
Alternate Furrow Irrigation: A Practical Way to Improve Grape Quality and Water Use Efficiency in Arid Northwest China 被引量:6
12
作者 DU Tai-sheng KANG Shao-zhong +1 位作者 YAN Bo-yuan ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期509-519,共11页
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ... Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas. 展开更多
关键词 alternate furrow irrigation partial root-zone irrigation fruit yield water use efficiency fruit quality grape(Fitis vinifera L.
下载PDF
Stem flow of seed-maize under alternate furrow irrigation and double-row ridge planting in an arid region of Northwest China 被引量:3
13
作者 BO Xiao-dong DU Tai-sheng +2 位作者 DING Ri-sheng TONG Ling LI Si-en 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1434-1445,共12页
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot... Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales. 展开更多
关键词 stem flow alternate partial root-zone furrow irrigation double-row ridge planting seed-maize
下载PDF
Non-negligible factors in low-pressure sprinkler irrigation:droplet impact angle and shear stress
14
作者 HUI Xin ZHENG Yudong +2 位作者 MUHAMMAD Rizwan Shoukat TAN Haibin YAN Haijun 《Journal of Arid Land》 SCIE CSCD 2022年第11期1293-1316,共24页
Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ... Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system. 展开更多
关键词 center pivot irrigation system water droplet universal model soil erosion water-saving irrigation
下载PDF
Efficient Water-Saving Irrigation,Space Efficiency and Agricultural Development——Study Based on Spatial Stochastic Frontier Model
15
作者 HAN Aihua HUANG Jian +1 位作者 WANG Xin ZHU Zhengyuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第6期2559-2579,共21页
Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural de... Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural development is saving water.This paper takes the high-efficient water-saving irrigation technology of 41 regions along the Tarim River from 2002 to 2013 as the research object,adopts spatial stochastic frontier model to measure the space efficiency of high-efficient water-saving irrigation technology,and analyzes the effect of water-saving irrigation technology on agricultural development.Results show that the water-saving irrigation technology has a spatial effect,if neglecting it,the error of missing variables will occur,and the average loss will be 6.98 percentage points.The spatial correlation effect promotes the improvement of the efficiency of water-saving irrigation technology.The spatial heterogeneity leads to the spatial imbalance of the efficiency of water-saving irrigation technology.The promotion of agricultural water-saving irrigation technology can increase production and the efficiency of agricultural development.Due to the technical heterogeneity of different types of water-saving irrigation technology,the contribution to the development of agriculture is also different.The study finds that water-saving irrigation technology of drip irrigation in the Tarim River contributes more to agricultural development. 展开更多
关键词 Spatial stochastic frontier model Tarim river basin water-saving irrigation
原文传递
Optimizing water-saving irrigation schemes for rice(Oryza sativa L.)using DSSAT-CERES-Rice model
16
作者 Shikai Gao Qiongqiong Gu +3 位作者 Xuewen Gong Yanbin Li Shaofeng Yan Yuanyuan Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期142-151,共10页
Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and draina... Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and drainage scheme by combining existing technology is currently a hot topic.Crop growth models can be used to assess actual or proposed water management regimes intended to increase water use efficiency and mitigate water shortages.In this study,a CERES-Rice model was calibrated and validated using a two-year field experiment.Four irrigation and drainage treatments were designed for the experiment:alternate wetting and drying(AWD),controlled drainage(CD),controlled irrigation and drainage for a low water level(CID1),and controlled irrigation and drainage for a high water level(CID2).According to the indicators normalized root mean square error(NRMSE)and index of agreement(d),the calibrated CERES-Rice model accurately predicted grain yield(NRMSE=6.67%,d=0.77),,shoot biomass(NRMSE=3.37%,d=0.77),actual evapotranspiration(ETa)(NRMSE=3.83%,d=0.74),irrigation volume(NRMSE=15.56%,d=0.94),and leaf area index(NRMSE=9.69%,d=0.98)over 2 a.The calibrated model was subsequently used to evaluate rice production in response to the four treatments(AWD,CD,CID1,and CID2)under 60 meteorological scenarios which were divided into wet years(22 a),normal years(16 a),and dry years(22 a).Results showed that the yield of AWD was the largest among four treatments in different hydrological years.Relative to that of AWD,the yield of CD,CID1,and CID2 were respectively reduced by 5.7%,2.6%,8.7%in wet years,9.2%,2.3%,8.6% in normal years,and 9.2%,3.8%,3.9% in dry years.However,rainwater use efficiency and irrigation water use efficiency were the greatest for CID2 in different hydrological years.The entropy-weighting TOPSIS model was used to optimize the four water-saving irrigation schemes in terms of water-saving,labor-saving and high-yield,based on the simulation results of the CERES-Rice model in the past 60 a.These results showed that CID1 and AWD were optimal in the wet years,CID1 and CID2 were optimal in the normal and dry years.These results may provide a strong scientific basis for the optimization of water-saving irrigation technology for rice. 展开更多
关键词 CERES-Rice controlled irrigation and drainage water-saving long-term weather data water use efficiency
原文传递
宁夏引黄灌区果园生草处理对土壤理化性质的影响
17
作者 李晓龙 马军 +10 位作者 褚燕南 岳海英 王芳 岳芬芬 刘婷 李元 王媛 吴昊 贾永华 田建文 《江苏农业学报》 CSCD 北大核心 2024年第7期1227-1233,共7页
本研究选用多年生黑麦草、紫花苜蓿、高羊茅、长柔毛野豌豆4种功能草种,以清耕和自然生草作为对照,探究不同生草处理对果园土壤理化性质的影响。结果表明,与多年生黑麦草生草处理相比,紫花苜蓿与长柔毛野豌豆生草处理可以显著提高0~20 c... 本研究选用多年生黑麦草、紫花苜蓿、高羊茅、长柔毛野豌豆4种功能草种,以清耕和自然生草作为对照,探究不同生草处理对果园土壤理化性质的影响。结果表明,与多年生黑麦草生草处理相比,紫花苜蓿与长柔毛野豌豆生草处理可以显著提高0~20 cm土层土壤总孔隙度和0~20 cm、21~40 cm土层田间持水量(P<0.05),显著降低0~20 cm土层土壤容重(P<0.05)。与处理前相比,2022年10月紫花苜蓿与长柔毛野豌豆生草处理的土壤有机质含量、全盐含量、碱解氮含量(0~20 cm土层)、有效钾含量(0~20 cm土层)显著提高(P<0.05),土壤pH(0~20 cm土层)显著降低(P<0.05)。因此,在干旱和半干旱地区可以选择苜蓿和长柔毛野豌豆进行果园生草处理。本研究结果为改良果园土壤,提高水果产量提供了理论依据。 展开更多
关键词 宁夏引黄灌区 果园生草 土壤 理化性质
下载PDF
不同灌溉方式和灌水量对土壤水盐及燕麦生长特征的影响
18
作者 赵文举 张雪儿 +1 位作者 李建承 俞海英 《水土保持通报》 CSCD 北大核心 2024年第3期16-25,共10页
[目的]探究不同灌溉方式和灌水量对土壤水盐变化规律及燕麦生长特征的影响,为提高盐碱地作物的生产效能和土壤水分管理提供科学参考。[方法]采用盆栽试验,设置3种灌溉方式:常规灌溉、固定单侧灌溉(fixed unilateral root zone irrigatio... [目的]探究不同灌溉方式和灌水量对土壤水盐变化规律及燕麦生长特征的影响,为提高盐碱地作物的生产效能和土壤水分管理提供科学参考。[方法]采用盆栽试验,设置3种灌溉方式:常规灌溉、固定单侧灌溉(fixed unilateral root zone irrigation,FURI)、交替灌溉(alternative partial root zone irrigation,APRI),3组灌水量:W_1(60%θ_f~70%θ_f,θ_f为田间持水率),W_2(70%θ_f~80%θ_f)和W_3(80%θ_f~90%θ_f),以常规灌溉作为对照,共9组交互处理。[结果](1)不同灌溉方式下,土壤各层含水率变化趋势基本一致,随灌水量增加洗盐效果越显著,常规灌溉的深层含水率总体高于其他两种灌溉方式。(2)燕麦株高、叶绿素相对含量(relative chlorophyll content of leaves,SPAD)、品质随灌水量的增加而上升,与常规灌溉相比,W_2灌溉水平下,分根交替灌溉处理的粗脂肪,粗蛋白,β-葡聚糖含量分别增加7.02%,3.76%,6.06%,但降低了燕麦叶片的SPAD值,影响其光合能力。(3)随着燕麦生育期的推进,土壤盐分均呈现不同程度的累积,分根交替灌溉的积盐率最低,同时对燕麦根系生长、水分利用效率及产量影响显著,其中根系总长、根系总表面积、根系总体积较相同灌水量(W_2)的常规灌溉分别增加6.75%,6.92%,12.5%,水分利用效率提高17.32%。[结论]采用分根交替灌溉方式下的中等灌水量(W_2)有利于提高燕麦的生产效能,对盐分累积的控制效果较好。 展开更多
关键词 分根交替灌溉 土壤水盐 燕麦 水分利用效率 品质
下载PDF
浔江南岸灌区工程总体方案研究
19
作者 龙四立 蓝诚宁 +1 位作者 谢升申 刘远驰 《广西水利水电》 2024年第4期77-81,86,共6页
大型灌区是我国粮食和优质农产品的主要产区。新时期国家粮食安全、乡村振兴等发展战略对大型灌区建设提出了新要求。本文基于新时期灌区发展在保障粮食安全、水安全、区域水网建设、乡村振兴等方面要求,针对梧州市浔江南岸区域水资源... 大型灌区是我国粮食和优质农产品的主要产区。新时期国家粮食安全、乡村振兴等发展战略对大型灌区建设提出了新要求。本文基于新时期灌区发展在保障粮食安全、水安全、区域水网建设、乡村振兴等方面要求,针对梧州市浔江南岸区域水资源和土地资源情况,提出浔江南岸灌区工程总体方案,构建灌区水资源配置格局和水网工程体系,满足灌区农业灌溉和城乡供水要求,保障区域粮食生产安全和供水安全,助推乡村振兴和区域水网建设。 展开更多
关键词 水网 水资源配置 浔江南岸灌区 总体方案
下载PDF
龙云灌区新建水源工程正常蓄水位方案比选
20
作者 蒋华波 《广西水利水电》 2024年第1期90-92,96,共4页
水库正常蓄水位方案比选是确定水库规模的一个重要环节,关系到工程实施的经济性和可行性。本文以广西玉林市龙云灌区工程为例,研究提出了串联水库正常蓄水位方案比选的原则和方法,得出了经济合理的正常蓄水位成果。
关键词 水源工程 正常蓄水位 方案比选 龙云灌区
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部