期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
(2+1)维非线性分数阶Zoomeron方程的新精确解 被引量:5
1
作者 黄春 孙峪怀 +1 位作者 李钊 张健 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第1期51-54,共4页
通过复变换将高维非线性分数阶偏微分方程转化为整数阶常微分方程,然后利用扩展的(G'/G)-展开法,构建(2+1)维非线性分数阶Zoomeron方程的新精确解,其中包括含参数的双曲函数解、三角函数解和有理数解.
关键词 (2+1)维非线性分数阶zoomeron方程 扩展的(G'/G)-展开法 精确解
下载PDF
(2+1)维Zoomeron方程的无界行波解 被引量:1
2
作者 周钰谦 蔡珊珊 刘倩 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第6期829-832,共4页
利用动力系统分岔方法和微分方程数值模拟的方法研究了(2+1)维Zoomeron方程,获得了系统的参数分岔集和不同拓扑结构的相图.根据这些相图确定了系统的无界行波,并通过计算复杂的椭圆积分获得了它们的解析表达式.
关键词 zoomeron方程 无界行波解 动力系统 数值模拟 分岔
下载PDF
(2+1)维Zoomeron方程的新精确解 被引量:1
3
作者 刘庆松 周相泉 《河北师范大学学报(自然科学版)》 CAS 北大核心 2014年第3期229-232,共4页
利用广义代数方法,得到了Zoomeron方程许多精确解,包括双曲函数解、三角周期解,有理函数解、雅可比椭圆函数解等.
关键词 (2+1)维zoomeron方程 广义代数法 齐次平衡法 精确解
下载PDF
Nonlinear dynamical wave structures of Zoomeron equation for population models 被引量:1
4
作者 Ahmet Bekir Emad H M Zahran 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期235-240,共6页
The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéappro... The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéapproach method(PPAM).When the variables appearing in the exact solutions take specific values,the solitary wave solutions will be easily obtained.The realized results prove the efficiency of this technique. 展开更多
关键词 (2+1)-dimensional non-fractional zoomeron equation time-fractional biological population model Paul-Painlevéapproach method traveling wave solutions
下载PDF
New Exact Traveling Wave Solutions of (2 + 1)-Dimensional Time-Fractional Zoomeron Equation 被引量:2
5
作者 Zhiyun Zeng Xiaohua Liu +1 位作者 Yin Zhu Xue Huang 《Journal of Applied Mathematics and Physics》 2022年第2期333-346,共14页
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co... In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions. 展开更多
关键词 Exact Traveling Wave Solutions (2 + 1)-Dimensional Time-Fractional zoomeron Equation The New Mapping Approach The New Extended Auxiliary Equation Approach
下载PDF
Exact solutions of conformable time fractional Zoomeron equation via IBSEFM
6
作者 Ulviye Demirbilek Volkan Ala Khanlar R.Mamedov 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第4期554-563,共10页
The nonlinear conformable time-fractional Zoomeron equation is an important mod-el to describe the evolution of a single scalar field.In this paper,new exact solutions of con-formable time-fractional Zoomeron equation... The nonlinear conformable time-fractional Zoomeron equation is an important mod-el to describe the evolution of a single scalar field.In this paper,new exact solutions of con-formable time-fractional Zoomeron equation are constructed using the Improved Bernoulli Sub-Equation Function Method(IBSEFM).According to the parameters,3D and 2D figures of the solutions are plotted by the aid of Mathematics software.The results show that IBSEFM is an efficient mathematical tool to solve nonlinear conformable time-fractional equations arising in mathematical physics and nonlinear optics. 展开更多
关键词 conformable time-fractional derivative zoomeron equation IBSEFM
下载PDF
Symbolic Computation and New Exact Travelling Solutions for the (2+1)-Dimensional Zoomeron Equation
7
作者 Hua Gao 《International Journal of Modern Nonlinear Theory and Application》 2014年第2期23-28,共6页
In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbol... In this paper, we present Yan’s sine-cosine method and Wazwaz’s sine-cosine method to solve the (2+1)-dimensional Zoomeron equation. New exact travelling wave solutions are explicitly obtained with the aid of symbolic computation. The study confirms the power of the two schemes. 展开更多
关键词 Sine-Cosine Method (2+1)-Dimensional zoomeron EQUATION Nonlinear Evolution EQUATIONS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部