Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of e...Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.展开更多
在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制...在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制。本文所提机制根据传输路径上各节点重传缓存使用情况及数据分片剩余跳数等信息,设置动态重传缓存门限,并为超过该门限的节点从其邻居节点中挑选合适的备用缓存节点,从而完成数据分片的缓存与重传过程,达到均衡使用各节点重传缓存的目的。结果表明,所提机制能够有效避免重传缓存溢出,减小网络能耗,同时进一步提高目的端重组成功率。展开更多
The crystal structure of the title compound(C19H15F3N2O2,Mr = 360.33) was determined by single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P1,with a = 6.5604(7),b = 13.9614(16),c = 18....The crystal structure of the title compound(C19H15F3N2O2,Mr = 360.33) was determined by single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P1,with a = 6.5604(7),b = 13.9614(16),c = 18.1790(18) ,α = 102.749(7),β = 97.542(6),γ = 94.355(4)°,V = 1600.5(3) 3,Z = 4,Dc = 1.495 g/cm3,λ(MoKα) = 0.71070,F(000) = 744,μ(MoKα) = 0.122 mm-1,R = 0.0434 and wR = 0.1051.A total of 7590 unique reflections were collected,of which 5429 with |F|2 ≥ 2σ|F|2 were observed.The two cyclohexene rings in the molecule adopt boat-boat conformations with the deviations of ring atoms C(9) and C10 from the C(5)/C(6)/C(7)/C(8) plane(Ⅰ) by 1.1204(0.0023) and 1.1132(0.0023) ,respectively,whereas from the C(2)/C(3)/C(5)/C(8) plane(Ⅱ) by 1.1627(0.0022) and 1.1818(0.0021) ,respectively.In the cyclopropane and lactam rings,atoms C(11) and N(1) point towards the double bond of C(9)-C(10) and the dihedral angle between the ring plane(Ⅲ) containing C(1),C(2),C(3) and C(4) and plane(IV) consisting of C(6),C(7) and C(11) is 55.76(0.07)°.The dihedral angles between planes Ⅳ and Ⅰ and Ⅱ and Ⅲare 63.58(0.07)° and 58.10(0.06)°,respectively.The dihedral angle between the benzene ring C(13)~ C(18) and plane Ⅳ is 42.41(0.06)°.展开更多
基金supported by the General Program of the National Natural Science Foundation of China[No.31570162]the National Key Research Program[No.2016YFC1200200].
文摘Objective To recover broad-neutralizing monoclonal antibodies(Bn Abs)from avian influenza A(H5N1)virus infection cases and investigate their genetic and functional features.Methods We screened the Abs repertoires of expanded B cells circulating in the peripheral blood of H5N1 patients.The genetic basis,biological functions,and epitopes of the obtained Bn Abs were assessed and modeled.Results Two Bn Abs,2-12 D5,and 3-37 G7.1,were respectively obtained from two human H5N1 cases on days 12 and 21 after disease onset.Both Abs demonstrated cross-neutralizing and Ab-dependent cellular cytotoxicity(ADCC)activity.Albeit derived from distinct Ab lineages,i.e.,V^H1-69-D2-15-JH^4(2-12D5)and V^H1-2-D3-9-JH^5(3-32 G7.1),the Bn Abs were directed toward CR6261-like epitopes in the HA stem,and HA2 I45 in the hydrophobic pocket was the critical residue for their binding.Signature motifs for binding with the HA stem,namely,IFY in VH1-69-encoded Abs and LXYFXW in D3-9-encoded Abs,were also observed in 2-12D5 and 3-32 G7.1,respectively.Conclusions Cross-reactive B cells of different germline origins could be activated and re-circulated by avian influenza virus.The HA stem epitopes targeted by the Bn Abs,and the two Ab-encoding genes usage implied the VH1-69 and D3-9 are the ideal candidates triggered by influenza virus for vaccine development.
文摘在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制。本文所提机制根据传输路径上各节点重传缓存使用情况及数据分片剩余跳数等信息,设置动态重传缓存门限,并为超过该门限的节点从其邻居节点中挑选合适的备用缓存节点,从而完成数据分片的缓存与重传过程,达到均衡使用各节点重传缓存的目的。结果表明,所提机制能够有效避免重传缓存溢出,减小网络能耗,同时进一步提高目的端重组成功率。
文摘The crystal structure of the title compound(C19H15F3N2O2,Mr = 360.33) was determined by single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P1,with a = 6.5604(7),b = 13.9614(16),c = 18.1790(18) ,α = 102.749(7),β = 97.542(6),γ = 94.355(4)°,V = 1600.5(3) 3,Z = 4,Dc = 1.495 g/cm3,λ(MoKα) = 0.71070,F(000) = 744,μ(MoKα) = 0.122 mm-1,R = 0.0434 and wR = 0.1051.A total of 7590 unique reflections were collected,of which 5429 with |F|2 ≥ 2σ|F|2 were observed.The two cyclohexene rings in the molecule adopt boat-boat conformations with the deviations of ring atoms C(9) and C10 from the C(5)/C(6)/C(7)/C(8) plane(Ⅰ) by 1.1204(0.0023) and 1.1132(0.0023) ,respectively,whereas from the C(2)/C(3)/C(5)/C(8) plane(Ⅱ) by 1.1627(0.0022) and 1.1818(0.0021) ,respectively.In the cyclopropane and lactam rings,atoms C(11) and N(1) point towards the double bond of C(9)-C(10) and the dihedral angle between the ring plane(Ⅲ) containing C(1),C(2),C(3) and C(4) and plane(IV) consisting of C(6),C(7) and C(11) is 55.76(0.07)°.The dihedral angles between planes Ⅳ and Ⅰ and Ⅱ and Ⅲare 63.58(0.07)° and 58.10(0.06)°,respectively.The dihedral angle between the benzene ring C(13)~ C(18) and plane Ⅳ is 42.41(0.06)°.