The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started...The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environme...Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytoki...Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.展开更多
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i...Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.展开更多
Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is k...Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.展开更多
Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to...Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.展开更多
Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangle...Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.展开更多
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the dev...Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.展开更多
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even...The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to...Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to regulating the proliferation,differentiation,and migration of Th17 and Treg cells.Wdr63,a gene containing the WD repeat domain,participates in the structure and functional modulation of actin cytoskeleton.Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition.This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis.Methods We constructed Wdr63-/-mice,induced colitis in mice using dextran sulfate sodium salt,collected colon tissue for histopathological staining,collected mesenteric lymph nodes for flow cytometry analysis,and collected healthy mouse feces for microbial diversity detection.Results Compared with wild-type colitis mice,Wdr63-/-colitis mice had a more pronounced shortening of colonic tissue,higher scores on disease activity index and histological damage index,Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes,a lower level of anti-inflammatory cytokine IL-10,and a higher level of pro-inflammatory cytokine IL-17A.In addition,WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis.It maintains the balance of Bacteroidota and Firmicutes,promoting the formation of beneficial intestinal bacteria linked to immune inflammation.Conclusion Wdr63 deletion aggravates ulcerative colitis in mice,WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.展开更多
BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and fronti...BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and frontiers of SSD.METHODS The documents related to SSD are obtained from the web of science core collection database(WoSCC),and VOSviewer 1.6.16 from January 1,2000 to December 31,2023,and the WoSCC’s literature analysis wire were used to conduct the biblio-metric analysis.RESULTS A total of 567 documents related to SSD were included,and 2325 authors across 947 institutions from 57 countries/regions have contributed to SSD research,published in 277 journals.The most productive author,institution,country and journal were Löwe B,University of Hamburg,Germany,and Journal of Psycho-somatic Research respectively.The first high-cited document was published in the Journal of Psychosomatic Research in 2013 by Dimsdale JE and colleagues,which explored the rationale behind the SSD diagnosis introduction in diagnostic and statistical manual of mental disorders.CONCLUSION In conclusion,the main research hotspots and frontiers in the field of SSD are validity and reliability of the SSD criteria,functional impairment of SSD,and the treatment for SSD.More high-quality studies are needed to assess the diagnosis and treatment of SSD.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery...BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery.AIM To develop predictive models utilizing machine learning(ML)methods to detect early-stage patients at a high risk of mortality.METHODS Eight hundred and eight patients with HCC at Beijing Ditan Hospital were randomly allocated to training and validation cohorts in a 2:1 ratio.Prognostic models were generated using random survival forests and artificial neural networks(ANNs).These ML models were compared with other classic HCC scoring systems.A decision-tree model was established to validate the contri-bution of immune-inflammatory indicators to the long-term outlook of patients with early-stage HCC.RESULTS Immune-inflammatory markers,albumin-bilirubin scores,alpha-fetoprotein,tumor size,and International Normalized Ratio were closely associated with the 5-year survival rates.Among various predictive models,the ANN model gene-rated using these indicators through ML algorithms exhibited superior perfor-mance,with a 5-year area under the curve(AUC)of 0.85(95%CI:0.82-0.88).In the validation cohort,the 5-year AUC was 0.82(95%CI:0.74-0.85).According to the ANN model,patients were classified into high-risk and low-risk groups,with an overall survival hazard ratio of 7.98(95%CI:5.85-10.93,P<0.0001)between the two cohorts.INTRODUCTION Hepatocellular carcinoma(HCC)is one of the six most prevalent cancers[1]and the third leading cause of cancer-related mortality[2].China has some of the highest incidence and mortality rates for liver cancer,accounting for half of global cases[3,4].The Barcelona Clinic Liver Cancer(BCLC)Staging System is the most widely used framework for diagnosing and treating HCC[5].The optimal candidates for surgical treatment are those with early-stage HCC,classified as BCLC stage 0 or A.Patients with early-stage liver cancer typically have a better prognosis after surgical resection,achieving a 5-year survival rate of 60%-70%[6].However,the high postoperative recurrence rates of HCC remain a major obstacle to long-term efficacy.To improve the prognosis of patients with early-stage HCC,it is necessary to develop models that can identify those with poor prognoses,enabling stratified and personalized treatment and follow-up strategies.Chronic inflammation is linked to the development and advancement of tumors[7].Recently,peripheral blood immune indicators,such as neutrophil-to-lymphocyte ratio(NLR),platelet-to-lymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),have garnered extensive attention and have been used to predict survival in various tumors and inflammation-related diseases[8-10].However,the relationship between these combinations of immune markers and the outcomes in patients with early-stage HCC require further investigation.Machine learning(ML)algorithms are capable of handling large and complex datasets,generating more accurate and personalized predictions through unique training algorithms that better manage nonlinear statistical relationships than traditional analytical methods.Commonly used ML models include artificial neural networks(ANNs)and random survival forests(RSFs),which have shown satisfactory accuracy in prognostic predictions across various cancers and other diseases[11-13].ANNs have performed well in identifying the progression from liver cirrhosis to HCC and predicting overall survival(OS)in patients with HCC[14,15].However,no studies have confirmed the ability of ML models to predict post-surgical survival in patients with early-stage HCC.Through ML,a better understanding of the risk factors for early-stage HCC prognosis can be achieved.This aids in surgical decision-making,identifying patients at a high risk of mortality,and selecting subsequent treatment strategies.In this study,we aimed to establish a 5-year prognostic model for patients with early-stage HCC after surgical resection,based on ML and systemic immune-inflammatory indicators.This model seeks to improve the early monitoring of high-risk patients and provide personalized treatment plans.展开更多
BACKGROUND Postpancreatectomy hemorrhage is one of the most severe and life-threatening complications after pancreaticoduodenectomy.We present four cases of gastrointestinal bleeding patients to clarify its appropriat...BACKGROUND Postpancreatectomy hemorrhage is one of the most severe and life-threatening complications after pancreaticoduodenectomy.We present four cases of gastrointestinal bleeding patients to clarify its appropriate treatment and prevention.CASE SUMMARY The main symptoms included black stool,hematochezia,haematemesis,blood in the nasogastric tube,and hemorrhagic shock.The mean age was 66.25 years old and the median onset time was 340 d after the surgery.The bleeding location comprised gastrointestinal anastomosis,bile duct-jejunum anastomosis,and extraluminal bleeding.The possible causes included marginal ulcer,jejunal varix,and abdominal infection.Endoscopic hemostatic clips,as well as a covered stent using angiography,were utilized to stop the bleeding and three patients survived.Only one patient died of gastrointestinal bleeding,abdominal bleeding,abdominal infection,hypovolemic shock,and disseminated intravascular coagulation.CONCLUSION Early and effective endoscopic intervention is the key to successful hemostasis in patients with gastrointestinal bleeding after pancreatoduodenectomy.展开更多
BACKGROUND Cirrhotic patients with super-giant hepatocellular carcinoma(HCC)and portal vein invasion generally have a poor prognosis.This paper presents a patient with super-giant HCC and portal vein invasion,who unde...BACKGROUND Cirrhotic patients with super-giant hepatocellular carcinoma(HCC)and portal vein invasion generally have a poor prognosis.This paper presents a patient with super-giant HCC and portal vein invasion,who underwent hepatectomy followed by a combination of sorafenib and camrelizumab,resulting in complete remission(CR)for 5 years.CASE SUMMARY A 40-year-old male with compensated hepatitis B-related cirrhosis was diagnosed with HCC,Barcelona Clinic Liver Cancer stage C.Enhanced computed tomography imaging revealed a 152 mm×171 mm tumor in the right liver,invading the portal vein and hepatic vein.Liver function was normal.The patient successfully underwent hepatectomy on July 18,2019.However,by December 2019,HCC recurrence with lung metastases and portal vein invasion were detected.He started treatment with sorafenib(200 mg twice daily)and camrelizumab(200 mg every 3 weeks).By May 12,2020,the patient was confirmed to have CR.Camrelizumab was adjusted to 200 mg every 12 weeks from June 16,2021,with the last infusion on March 29,2024.Although no further tumor recurrence was observed,he experienced two episodes of gastrointestinal bleeding due to esophagogastric varices,which were managed with endoscopic therapy.To date,the patient has remained in CR for 5 years.CONCLUSION The combination of hepatectomy with sorafenib and camrelizumab can achieve durable CR in patients with supergiant HCC and portal vein invasion.Further research is necessary to address these challenges and improve patient outcomes.展开更多
BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological ...BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.展开更多
基金financed by the grant from the Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (No. 19YJCZH040)。
文摘The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the National Natural Science Foundation of China,Nos.82271283(to XC),91854115(to JW),31970044(to JW)the Natural Science Foundation of Beijing,No.7202001(to XC)the Scientific Research Project of Beijing Educational Committee,No.KM202010005022(to XC)。
文摘Salsolinol(1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,Sal)is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,an environmental toxin that causes Parkinson's disease.However,the mechanism by which Sal mediates dopaminergic neuronal death remains unclear.In this study,we found that Sal significantly enhanced the global level of N~6-methyladenosine(m~6A)RNA methylation in PC12 cells,mainly by inducing the downregulation of the expression of m~6A demethylases fat mass and obesity-associated protein(FTO)and alk B homolog 5(ALKBH5).RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway.The m~6A reader YTH domain-containing family protein 2(YTHDF2)promoted the degradation of m~6A-containing Yes-associated protein 1(YAP1)mRNA,which is a downstream key effector in the Hippo signaling pathway.Additionally,downregulation of YAP1 promoted autophagy,indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity.These findings reveal the role of Sal on m~6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy.Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,Nos.32070735(to QL),82371321(to QL),82171270(to ZL)Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1(to ZL)+2 种基金the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)。
文摘Stroke is classified as ischemic or hemorrhagic,and there are few effective treatments for either type.Immunologic mechanisms play a critical role in secondary brain injury following a stroke,which manifests as cytokine release,blood–brain barrier disruption,neuronal cell death,and ultimately behavioral impairment.Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models.However,in clinical trials of anti-inflammatory agents,longterm immunosuppression has not demonstrated significant clinical benefits for patients.This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair,as well as the complex pathophysiologic inflammatory processes in stroke.Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies.Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke.Furthermore,epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management.In this review,we summarize current findings on the epigenetic regulation of the inflammatory response in stroke,focusing on key signaling pathways including nuclear factor-kappa B,Janus kinase/signal transducer and activator of transcription,and mitogen-activated protein kinase as well as inflammasome activation.We also discuss promising molecular targets for stroke treatment.The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke,leading to improved post-stroke outcomes.
基金supported by research grants from the Ningbo Science and Technology Plan Project,No.2022Z143hezuo(to BL)the National Natural Science Foundation of China,No.82201520(to XD)。
文摘Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
基金supported by the National Key Research&Development Program of China,Nos.2021YFC2501205(to YC),2022YFC24069004(to JL)the STI2030-Major Project,Nos.2021ZD0201101(to YC),2022ZD0211800(to YH)+2 种基金the National Natural Science Foundation of China(Major International Joint Research Project),No.82020108013(to YH)the Sino-German Center for Research Promotion,No.M-0759(to YH)a grant from Beijing Municipal Science&Technology Commission(Beijing Brain Initiative),No.Z201100005520018(to JL)。
文摘Several promising plasma biomarker proteins,such as amyloid-β(Aβ),tau,neurofilament light chain,and glial fibrillary acidic protein,are widely used for the diagnosis of neurodegenerative diseases.However,little is known about the long-term stability of these biomarker proteins in plasma samples stored at-80°C.We aimed to explore how storage time would affect the diagnostic accuracy of these biomarkers using a large cohort.Plasma samples from 229 cognitively unimpaired individuals,encompassing healthy controls and those experiencing subjective cognitive decline,as well as 99 patients with cognitive impairment,comprising those with mild cognitive impairment and dementia,were acquired from the Sino Longitudinal Study on Cognitive Decline project.These samples were stored at-80°C for up to 6 years before being used in this study.Our results showed that plasma levels of Aβ42,Aβ40,neurofilament light chain,and glial fibrillary acidic protein were not significantly correlated with sample storage time.However,the level of total tau showed a negative correlation with sample storage time.Notably,in individuals without cognitive impairment,plasma levels of total protein and tau phosphorylated protein threonine 181(p-tau181)also showed a negative correlation with sample storage time.This was not observed in individuals with cognitive impairment.Consequently,we speculate that the diagnostic accuracy of plasma p-tau181 and the p-tau181 to total tau ratio may be influenced by sample storage time.Therefore,caution is advised when using these plasma biomarkers for the identification of neurodegenerative diseases,such as Alzheimer's disease.Furthermore,in cohort studies,it is important to consider the impact of storage time on the overall results.
基金supported by the Scientific Research Project of China Rehabilitation Research Center,No.2021zx-23the National Natural Science Foundation of China,No.32100925the Beijing Nova Program,No.Z211100002121038。
文摘Poststro ke cognitive impairment is a major secondary effect of ischemic stroke in many patients;however,few options are available for the early diagnosis and treatment of this condition.The aims of this study were to(1)determine the specific relationship between hypoxic andα-synuclein during the occur of poststroke cognitive impairment and(2)assess whether the serum phosphorylatedα-synuclein level can be used as a biomarker for poststro ke cognitive impairment.We found that the phosphorylatedα-synuclein level was significantly increased and showed pathological aggregation around the cerebral infa rct area in a mouse model of ischemic stroke.In addition,neuronalα-synuclein phosphorylation and aggregation were observed in the brain tissue of mice subjected to chronic hypoxia,suggesting that hypoxia is the underlying cause ofα-synuclein-mediated pathology in the brains of mice with ischemic stroke.Serum phosphorylatedα-synuclein levels in patients with ischemic stroke were significantly lower than those in healt hy subjects,and were positively correlated with cognition levels in patients with ischemic stroke.Furthermore,a decrease in serum high-density lipoprotein levels in stroke patie nts was significantly correlated with a decrease in phosphorylatedα-synuclein levels.Although ischemic stroke mice did not show significant cognitive impairment or disrupted lipid metabolism 14 days after injury,some of them exhibited decreased cognitive function and reduced phosphorylatedα-synuclein levels.Taken together,our results suggest that serum phosphorylatedα-synuclein is a potential biomarker for poststroke cognitive impairment.
基金supported by a grant from Key Laboratory of Alzheimer's Disease of Zhejiang Province,Institute of Aging,Wenzhou Medical University,No.ZJAD-2021002(to ZW)。
文摘Alzheimer's disease is characterized by deposition of amyloid-β,which forms extracellular neuritic plaques,and accumulation of hyperphosphorylated tau,which aggregates to form intraneuronal neurofibrillary tangles,in the brain.The NLRP3 inflammasome may play a role in the transition from amyloid-βdeposition to tau phosphorylation and aggregation.Because NLRP3 is primarily found in brain microglia,and tau is predominantly located in neurons,it has been suggested that NLRP3 expressed by microglia indirectly triggers tau phosphorylation by upregulating the expression of pro-inflammatory cytokines.Here,we found that neurons also express NLRP3 in vitro and in vivo,and that neuronal NLRP3 regulates tau phosphorylation.Using biochemical methods,we mapped the minimal NLRP3 promoter and identified FUBP3 as a transcription factor regulating NLRP3 expression in neurons.In primary neurons and the neuroblastoma cell line Neuro2A,FUBP3 is required for endogenous NLRP3 expression and tau phosphorylation only when amyloid-βis present.In the brains of aged wild-type mice and a mouse model of Alzheimer's disease,FUBP3 expression was markedly increased in cortical neurons.Transcriptome analysis suggested that FUBP3 plays a role in neuron-mediated immune responses.We also found that FUBP3 trimmed the 5′end of DNA fragments that it bound,implying that FUBP3 functions in stress-induced responses.These findings suggest that neuronal NLRP3 may be more directly involved in the amyloid-β-to–phospho-tau transition than microglial NLRP3,and that amyloid-βfundamentally alters the regulatory mechanism of NLRP3 expression in neurons.Given that FUBP3 was only expressed at low levels in young wild-type mice and was strongly upregulated in the brains of aged mice and Alzheimer's disease mice,FUBP3 could be a safe therapeutic target for preventing Alzheimer's disease progression.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
基金supported by the National Natural Science Foundation of China,Nos.82371886(to JY),81925020(to DM),82202797(to LW),and 82271218(to CZ).
文摘Alzheimer’s disease is a common neurodegenerative disorder defined by decreased reasoning abilities,memory loss,and cognitive deterioration.The presence of the blood-brain barrier presents a major obstacle to the development of effective drug therapies for Alzheimer’s disease.The use of ultrasound as a novel physical modulation approach has garnered widespread attention in recent years.As a safe and feasible therapeutic and drug-delivery method,ultrasound has shown promise in improving cognitive deficits.This article provides a summary of the application of ultrasound technology for treating Alzheimer’s disease over the past 5 years,including standalone ultrasound treatment,ultrasound combined with microbubbles or drug therapy,and magnetic resonance imaging-guided focused ultrasound therapy.Emphasis is placed on the benefits of introducing these treatment methods and their potential mechanisms.We found that several ultrasound methods can open the blood-brain barrier and effectively alleviate amyloid-βplaque deposition.We believe that ultrasound is an effective therapy for Alzheimer’s disease,and this review provides a theoretical basis for future ultrasound treatment methods.
基金supported by the National Natural Science Foundation of China,No.81921006(to GHL)。
文摘The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
文摘Objective Ulcerative colitis is a prevalent immunoinflammatory disease.Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis.The actin cytoskeleton contributes to regulating the proliferation,differentiation,and migration of Th17 and Treg cells.Wdr63,a gene containing the WD repeat domain,participates in the structure and functional modulation of actin cytoskeleton.Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition.This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis.Methods We constructed Wdr63-/-mice,induced colitis in mice using dextran sulfate sodium salt,collected colon tissue for histopathological staining,collected mesenteric lymph nodes for flow cytometry analysis,and collected healthy mouse feces for microbial diversity detection.Results Compared with wild-type colitis mice,Wdr63-/-colitis mice had a more pronounced shortening of colonic tissue,higher scores on disease activity index and histological damage index,Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes,a lower level of anti-inflammatory cytokine IL-10,and a higher level of pro-inflammatory cytokine IL-17A.In addition,WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis.It maintains the balance of Bacteroidota and Firmicutes,promoting the formation of beneficial intestinal bacteria linked to immune inflammation.Conclusion Wdr63 deletion aggravates ulcerative colitis in mice,WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.
文摘BACKGROUND With the growing scholarly and clinical fascination with somatic symptom dis-order(SSD),a bibliometric analysis is lacking.AIM To conduct a bibliometric analysis to investigate the current status and frontiers of SSD.METHODS The documents related to SSD are obtained from the web of science core collection database(WoSCC),and VOSviewer 1.6.16 from January 1,2000 to December 31,2023,and the WoSCC’s literature analysis wire were used to conduct the biblio-metric analysis.RESULTS A total of 567 documents related to SSD were included,and 2325 authors across 947 institutions from 57 countries/regions have contributed to SSD research,published in 277 journals.The most productive author,institution,country and journal were Löwe B,University of Hamburg,Germany,and Journal of Psycho-somatic Research respectively.The first high-cited document was published in the Journal of Psychosomatic Research in 2013 by Dimsdale JE and colleagues,which explored the rationale behind the SSD diagnosis introduction in diagnostic and statistical manual of mental disorders.CONCLUSION In conclusion,the main research hotspots and frontiers in the field of SSD are validity and reliability of the SSD criteria,functional impairment of SSD,and the treatment for SSD.More high-quality studies are needed to assess the diagnosis and treatment of SSD.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金Supported by High-Level Chinese Medicine Key Discipline Construction Project,No.zyyzdxk-2023005Capital Health Development Research Project,No.2024-1-2173the National Natural Science Foundation of China,No.82474426 and No.82474419。
文摘BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery.AIM To develop predictive models utilizing machine learning(ML)methods to detect early-stage patients at a high risk of mortality.METHODS Eight hundred and eight patients with HCC at Beijing Ditan Hospital were randomly allocated to training and validation cohorts in a 2:1 ratio.Prognostic models were generated using random survival forests and artificial neural networks(ANNs).These ML models were compared with other classic HCC scoring systems.A decision-tree model was established to validate the contri-bution of immune-inflammatory indicators to the long-term outlook of patients with early-stage HCC.RESULTS Immune-inflammatory markers,albumin-bilirubin scores,alpha-fetoprotein,tumor size,and International Normalized Ratio were closely associated with the 5-year survival rates.Among various predictive models,the ANN model gene-rated using these indicators through ML algorithms exhibited superior perfor-mance,with a 5-year area under the curve(AUC)of 0.85(95%CI:0.82-0.88).In the validation cohort,the 5-year AUC was 0.82(95%CI:0.74-0.85).According to the ANN model,patients were classified into high-risk and low-risk groups,with an overall survival hazard ratio of 7.98(95%CI:5.85-10.93,P<0.0001)between the two cohorts.INTRODUCTION Hepatocellular carcinoma(HCC)is one of the six most prevalent cancers[1]and the third leading cause of cancer-related mortality[2].China has some of the highest incidence and mortality rates for liver cancer,accounting for half of global cases[3,4].The Barcelona Clinic Liver Cancer(BCLC)Staging System is the most widely used framework for diagnosing and treating HCC[5].The optimal candidates for surgical treatment are those with early-stage HCC,classified as BCLC stage 0 or A.Patients with early-stage liver cancer typically have a better prognosis after surgical resection,achieving a 5-year survival rate of 60%-70%[6].However,the high postoperative recurrence rates of HCC remain a major obstacle to long-term efficacy.To improve the prognosis of patients with early-stage HCC,it is necessary to develop models that can identify those with poor prognoses,enabling stratified and personalized treatment and follow-up strategies.Chronic inflammation is linked to the development and advancement of tumors[7].Recently,peripheral blood immune indicators,such as neutrophil-to-lymphocyte ratio(NLR),platelet-to-lymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),have garnered extensive attention and have been used to predict survival in various tumors and inflammation-related diseases[8-10].However,the relationship between these combinations of immune markers and the outcomes in patients with early-stage HCC require further investigation.Machine learning(ML)algorithms are capable of handling large and complex datasets,generating more accurate and personalized predictions through unique training algorithms that better manage nonlinear statistical relationships than traditional analytical methods.Commonly used ML models include artificial neural networks(ANNs)and random survival forests(RSFs),which have shown satisfactory accuracy in prognostic predictions across various cancers and other diseases[11-13].ANNs have performed well in identifying the progression from liver cirrhosis to HCC and predicting overall survival(OS)in patients with HCC[14,15].However,no studies have confirmed the ability of ML models to predict post-surgical survival in patients with early-stage HCC.Through ML,a better understanding of the risk factors for early-stage HCC prognosis can be achieved.This aids in surgical decision-making,identifying patients at a high risk of mortality,and selecting subsequent treatment strategies.In this study,we aimed to establish a 5-year prognostic model for patients with early-stage HCC after surgical resection,based on ML and systemic immune-inflammatory indicators.This model seeks to improve the early monitoring of high-risk patients and provide personalized treatment plans.
文摘BACKGROUND Postpancreatectomy hemorrhage is one of the most severe and life-threatening complications after pancreaticoduodenectomy.We present four cases of gastrointestinal bleeding patients to clarify its appropriate treatment and prevention.CASE SUMMARY The main symptoms included black stool,hematochezia,haematemesis,blood in the nasogastric tube,and hemorrhagic shock.The mean age was 66.25 years old and the median onset time was 340 d after the surgery.The bleeding location comprised gastrointestinal anastomosis,bile duct-jejunum anastomosis,and extraluminal bleeding.The possible causes included marginal ulcer,jejunal varix,and abdominal infection.Endoscopic hemostatic clips,as well as a covered stent using angiography,were utilized to stop the bleeding and three patients survived.Only one patient died of gastrointestinal bleeding,abdominal bleeding,abdominal infection,hypovolemic shock,and disseminated intravascular coagulation.CONCLUSION Early and effective endoscopic intervention is the key to successful hemostasis in patients with gastrointestinal bleeding after pancreatoduodenectomy.
文摘BACKGROUND Cirrhotic patients with super-giant hepatocellular carcinoma(HCC)and portal vein invasion generally have a poor prognosis.This paper presents a patient with super-giant HCC and portal vein invasion,who underwent hepatectomy followed by a combination of sorafenib and camrelizumab,resulting in complete remission(CR)for 5 years.CASE SUMMARY A 40-year-old male with compensated hepatitis B-related cirrhosis was diagnosed with HCC,Barcelona Clinic Liver Cancer stage C.Enhanced computed tomography imaging revealed a 152 mm×171 mm tumor in the right liver,invading the portal vein and hepatic vein.Liver function was normal.The patient successfully underwent hepatectomy on July 18,2019.However,by December 2019,HCC recurrence with lung metastases and portal vein invasion were detected.He started treatment with sorafenib(200 mg twice daily)and camrelizumab(200 mg every 3 weeks).By May 12,2020,the patient was confirmed to have CR.Camrelizumab was adjusted to 200 mg every 12 weeks from June 16,2021,with the last infusion on March 29,2024.Although no further tumor recurrence was observed,he experienced two episodes of gastrointestinal bleeding due to esophagogastric varices,which were managed with endoscopic therapy.To date,the patient has remained in CR for 5 years.CONCLUSION The combination of hepatectomy with sorafenib and camrelizumab can achieve durable CR in patients with supergiant HCC and portal vein invasion.Further research is necessary to address these challenges and improve patient outcomes.
基金Supported by Beijing Ditan Hospital Affiliated to Capital Medical University“Sailing Plan”,No.DTQH-202405.
文摘BACKGROUND Empathetic psychological care improves mood and enhances the quality of life in critically ill patients.AIM To study the impact of combining 222-nm ultraviolet(UV)disinfection with empathetic psychological care on emotional states,nosocomial infection rates,and quality of life in critically ill patients.METHODS A total of 202 critically ill patients admitted to Beijing Ditan Hospital(December 2023 to May 2024)were randomly assigned to control(Ctrl,n=101)or observation groups(Obs,n=101).The Ctrl group received 222-nm UV disinfection and routine care,while the Obs group received 222-nm UV disinfection with empathetic psychological care.Emotional states[Self-Rating Anxiety Scale(SAS),Self-Rating Depression Scale(SDS)],hospital infection rates,quality of life(36-Item Short Form Health Survey),and patient satisfaction were evaluated.RESULTS At baseline,there were no significant differences in SAS and SDS scores between the groups(P>0.05).Following care,both groups demonstrated reductions in SAS and SDS scores,with the Obs group exhibiting a significantly greater reduction(P<0.05).The Obs group also experienced a significantly lower overall hospital infection rate(P<0.05).Similarly,while baseline 36-Item Short Form Health Survey scores did not differ significantly between the groups(P>0.05),post-care scores improved in both groups,with a greater improvement observed in the Obs group(P<0.05).Additionally,the Obs group reported higher patient satisfaction ratings(P<0.05).CONCLUSION The combination of 222-nm UV disinfection and empathetic psychological care improves emotional states,reduces hospital infection rates,enhances the quality of life,and increases patient satisfaction among critically ill patients.