It is not clear what effects of CD34-and CD133-specific antibody-coated stents have on reendothelialization and in-stent restenosis(ISR)at the early phase of vascular injury.This study aims at determining the capabili...It is not clear what effects of CD34-and CD133-specific antibody-coated stents have on reendothelialization and in-stent restenosis(ISR)at the early phase of vascular injury.This study aims at determining the capabilities of different coatings on stents(e.g.gelatin,anti-CD133 and anti-CD34 antibodies)to promote adhesion and proliferation of endothelial progenitor cells(EPCs).The in vitro study revealed that the adhesion force enabled the EPCs coated on glass slides to withstand flow-induced shear stress,so that allowing for the growth of the cells on the slides for 48 h.The in vivo experiment using a rabbit model in which the coated stents with different substrates were implanted showed that anti-CD34 and anti-CD133 antibody-coated stents markedly reduced the intima area and restenosis than bare mental stents(BMS)and gelatin-coated stents.Compared with the anti-CD34 antibody-coated stents,the time of cells adhesion was longer and earlier present in the anti-CD133 antibody-coated stents and anti-CD133 antibody-coated stents have superiority in re-endothelialization and inhibition of ISR.In conclusion,this study demonstrated that anti-CD133 antibody as a stent coating for capturing EPCs is better than anti-CD34 antibody in promoting endothelialization and reducing ISR.展开更多
Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering.However,there are few reports exploring the effects of rotational culture on cell morpho...Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering.However,there are few reports exploring the effects of rotational culture on cell morphology,nitric oxide(NO)production,and cell cycle of the endothelial cells from human umbili-cal vein on the stent surface.This study focuses on these parameters after the cells are seeded on the stents.Results showed that covering of stents by endothelial cells was improved by rotational culture.NO produc-tion decreased within 24 h in both rotational and static culture groups.In addition,rotational culture signifi-cantly increased NO production by 37.9%at 36 h and 28.9%at 48 h compared with static culture.Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture.Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents,which are expected to be the most frequently implanted materials in the future.展开更多
基金This study was partially supported by grants-in-aid from the National Natural Science Foundation of China(11332003,31370949)the National Key Technology R&D Program of China(2012BAI18B02)the National Key Basic Research Program of China(2012CB619101)。
文摘It is not clear what effects of CD34-and CD133-specific antibody-coated stents have on reendothelialization and in-stent restenosis(ISR)at the early phase of vascular injury.This study aims at determining the capabilities of different coatings on stents(e.g.gelatin,anti-CD133 and anti-CD34 antibodies)to promote adhesion and proliferation of endothelial progenitor cells(EPCs).The in vitro study revealed that the adhesion force enabled the EPCs coated on glass slides to withstand flow-induced shear stress,so that allowing for the growth of the cells on the slides for 48 h.The in vivo experiment using a rabbit model in which the coated stents with different substrates were implanted showed that anti-CD34 and anti-CD133 antibody-coated stents markedly reduced the intima area and restenosis than bare mental stents(BMS)and gelatin-coated stents.Compared with the anti-CD34 antibody-coated stents,the time of cells adhesion was longer and earlier present in the anti-CD133 antibody-coated stents and anti-CD133 antibody-coated stents have superiority in re-endothelialization and inhibition of ISR.In conclusion,this study demonstrated that anti-CD133 antibody as a stent coating for capturing EPCs is better than anti-CD34 antibody in promoting endothelialization and reducing ISR.
基金grants from the NSFC of China(No.30970721)the National Key Tech-nology R&D Program of China(2012BAI18B02)+1 种基金the Fundamental Research Funds for the Central Universities(No.CDJZR10230009)as well as the Public Experiment Center of State Bioindustrial Base(Chongqing),China.Thanks to Mr.Yi Cao and Dr.Li Xiao for their technical assistance in this experiment.
文摘Devices for the rotational culture of cells and the study of biological reactions have been widely applied in tissue engineering.However,there are few reports exploring the effects of rotational culture on cell morphology,nitric oxide(NO)production,and cell cycle of the endothelial cells from human umbili-cal vein on the stent surface.This study focuses on these parameters after the cells are seeded on the stents.Results showed that covering of stents by endothelial cells was improved by rotational culture.NO produc-tion decreased within 24 h in both rotational and static culture groups.In addition,rotational culture signifi-cantly increased NO production by 37.9%at 36 h and 28.9%at 48 h compared with static culture.Flow cytometry showed that the cell cycle was not obviously influenced by rotational culture.Results indicate that rotational culture may be helpful for preparation of cell-seeded vascular grafts and intravascular stents,which are expected to be the most frequently implanted materials in the future.