Many igneous rocks distribute in Gejiu tin polymetallic ore-field at Yunnan province, rocks including basalt, gabbro, mafic microgranular enclaves, granites (porphyritic granite and equigranular granite) and akaline...Many igneous rocks distribute in Gejiu tin polymetallic ore-field at Yunnan province, rocks including basalt, gabbro, mafic microgranular enclaves, granites (porphyritic granite and equigranular granite) and akaline rocks. The ages of the granites and akaline rocks which are considered to have genetic connecting with the mineralization have been comfirmed, but the gabbro- mafic microgranular enclaves-granite assemblage's ages are still unknown. By means of LA-ICP-MS zircon U-Pb dating, the data of Shenxianshui equigranular granite, the mafic microgranular enclave in Jiasha area, the host rock of the mafic microgranular enclaves and the Jiasha gabbro are around ~80 Ma. Besides the above mentioned data, a group of new ages at ~30 Ma were discovered in this study, which is from gabbro and mafic microgranular enclaves. Based on the previous data and the new data gained this time, we suggest the major geochronology framework of the magmatism and mineralization events in Gejiu area is ~80 Ma, which is consistent with the Late Cretaceous magmatism and mineralization events in the whole southeast Yunnan and west Guangxi area and they were suggested to belong to the same geotectonic setting in late Yenshannian. And the new ages of the ~30 Ma obtained in this study is considered to represent a responding to the complicate tectonic evolution history of the Tibetan orogenic events in Cenozoic.展开更多
To some extent, the sedimentary sequence with the largest groundwater reserves in northern Sahara is marked by a certain water table level, regionally known as the "Continental Intercalaire"(CI). "Conti...To some extent, the sedimentary sequence with the largest groundwater reserves in northern Sahara is marked by a certain water table level, regionally known as the "Continental Intercalaire"(CI). "Continental Intercalaire"(CI) refers to "Continental Intercalary" widely distributed among three countries. Algeria, Tunisia and Libya, which have significant potential of water resources. As it is the only water resource relatively easily accessible to the inhabitants of the Sahara, it is widely developed. The physico-chemical characteristics of statistical processing in principal component analysis(PCA) and the chemical phase measurement of groundwater in the unconfined aquifer captured by "Foggaras"(traditional system irrigation composed of well system linked by a horizontal channel from their bases) and the deep drillings located in the study area were accessible. Therefore, there were some favorable conditions for comparing the chemistry of these waters with the standards of potability established by the World Health Organization. Then, the study detected the origin of excessive mineralization and the excessive content of Na, Cl, K, Mg and Ca that originated from the leaching of the clay and carbonate layers of the "Continental Intercalaire". In addition, the enrichment in NO2-, NO3- and SO42- was due to the excessive use of fertilizer in the whole region for shallower Foggaras waters, and this study also showed the dominant chemical facies of groundwater related to the significant abundance of these mineral salts in this thick aquifer horizon.展开更多
基金supported by the National Science Foundation of China(40930419)Special Research Funding for the Public Benefits Sponsored by MLR (200911007–12)+2 种基金Research Program of Yunnan Tin Group (2010–04A)Geological Investigation Program by CGS (1212011120994)the Fundamental Research Funds for the Central Universities(2–9–2010–21)
文摘Many igneous rocks distribute in Gejiu tin polymetallic ore-field at Yunnan province, rocks including basalt, gabbro, mafic microgranular enclaves, granites (porphyritic granite and equigranular granite) and akaline rocks. The ages of the granites and akaline rocks which are considered to have genetic connecting with the mineralization have been comfirmed, but the gabbro- mafic microgranular enclaves-granite assemblage's ages are still unknown. By means of LA-ICP-MS zircon U-Pb dating, the data of Shenxianshui equigranular granite, the mafic microgranular enclave in Jiasha area, the host rock of the mafic microgranular enclaves and the Jiasha gabbro are around ~80 Ma. Besides the above mentioned data, a group of new ages at ~30 Ma were discovered in this study, which is from gabbro and mafic microgranular enclaves. Based on the previous data and the new data gained this time, we suggest the major geochronology framework of the magmatism and mineralization events in Gejiu area is ~80 Ma, which is consistent with the Late Cretaceous magmatism and mineralization events in the whole southeast Yunnan and west Guangxi area and they were suggested to belong to the same geotectonic setting in late Yenshannian. And the new ages of the ~30 Ma obtained in this study is considered to represent a responding to the complicate tectonic evolution history of the Tibetan orogenic events in Cenozoic.
文摘To some extent, the sedimentary sequence with the largest groundwater reserves in northern Sahara is marked by a certain water table level, regionally known as the "Continental Intercalaire"(CI). "Continental Intercalaire"(CI) refers to "Continental Intercalary" widely distributed among three countries. Algeria, Tunisia and Libya, which have significant potential of water resources. As it is the only water resource relatively easily accessible to the inhabitants of the Sahara, it is widely developed. The physico-chemical characteristics of statistical processing in principal component analysis(PCA) and the chemical phase measurement of groundwater in the unconfined aquifer captured by "Foggaras"(traditional system irrigation composed of well system linked by a horizontal channel from their bases) and the deep drillings located in the study area were accessible. Therefore, there were some favorable conditions for comparing the chemistry of these waters with the standards of potability established by the World Health Organization. Then, the study detected the origin of excessive mineralization and the excessive content of Na, Cl, K, Mg and Ca that originated from the leaching of the clay and carbonate layers of the "Continental Intercalaire". In addition, the enrichment in NO2-, NO3- and SO42- was due to the excessive use of fertilizer in the whole region for shallower Foggaras waters, and this study also showed the dominant chemical facies of groundwater related to the significant abundance of these mineral salts in this thick aquifer horizon.