DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in...DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.展开更多
Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the ...Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are...The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.展开更多
The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the ne...The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the negative effects of pro-posers’attention-capturing strategies that contribute to the“tragedy of the commons”and ensure an efficient distribution of attention among multiple proposals,it is necessary to establish a market-driven allocation scheme for DAOs’attention.First,the Harberger tax-based attention markets are designed to facilitate its allocation via continuous and automated trading,where the individualized Harberger tax rate(HTR)determined by the pro-posers’reputation is adopted.Then,the Stackelberg game model is formulated in these markets,casting attention to owners in the role of leaders and other competitive proposers as followers.Its equilibrium trading strategies are also discussed to unravel the intricate dynamics of attention pricing.Moreover,utilizing the single-round Stackelberg game as an illustrative example,the existence of Nash equilibrium trading strategies is demonstrated.Finally,the impact of individualized HTR on trading strategies is investigated,and results suggest that it has a negative correlation with leaders’self-accessed prices and ownership duration,but its effect on their revenues varies under different conditions.This study is expected to provide valuable insights into leveraging attention resources to improve DAOs’governance and decision-making process.展开更多
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos...THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs...Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.展开更多
Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-ind...Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.展开更多
This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consist...This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds,is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere.The FRB digital backend enables the formation of 96 digital beams,effectively covering an area of approximately 40 square degrees with the 3 dB beam.Our pipeline demonstrates the capability to conduct an automatic search of FRBs,detecting at quasi-realtime and classifying FRB candidates automatically.The current FRB searching pipeline has an overall recall rate of88%.During the commissioning phase,we successfully detected signals emitted by four well-known pulsars:PSR B0329+54,B2021+51,B0823+26,and B2020+28.We report the first discovery of an FRB by our array,designated as FRB 20220414A.We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.展开更多
In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information o...In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information on the multiple roots of the characteristic equation. This means one does not need to reconfigure the algorithm when changing the multiplicity groups. It is for this reason that the algorithm is called “universal”. In the present study, we solve the task of finding a linear optimal control for linear stationary discrete one- and higher-dimensional systems with scalar control. Moreover, we give analytical expressions for the control that minimize the quadratic criterion and ensure the asymptotic stability of the closed system. The obtained optimal control depends only on the parameters of the initial system and the roots of the characteristic equation.展开更多
Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which c...Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.展开更多
ChatG PT,an artificial intelligence generated content (AIGC) model developed by OpenAI,has attracted worldwide attention for its capability of dealing with challenging language understanding and generation tasks in th...ChatG PT,an artificial intelligence generated content (AIGC) model developed by OpenAI,has attracted worldwide attention for its capability of dealing with challenging language understanding and generation tasks in the form of conversations.This paper briefly provides an overview on the history,status quo and potential future development of ChatGPT,helping to provide an entry point to think about ChatGPT.Specifically,from the limited open-accessed resources,we conclude the core techniques of ChatGPT,mainly including large-scale language models,in-context learning,reinforcement learning from human feedback and the key technical steps for developing ChatGPT.We further analyze the pros and cons of ChatGPT and we rethink the duality of ChatGPT in various fields.Although it has been widely acknowledged that ChatGPT brings plenty of opportunities for various fields,mankind should still treat and use ChatG PT properly to avoid the potential threat,e.g.,academic integrity and safety challenge.Finally,we discuss several open problems as the potential development of ChatGPT.展开更多
Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programm...Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programming, but are uncertain about the applicability and effort needed to implement those approaches in comparison to classical Programmable Logic Controller?(PLC) programming with IEC 61131-3. The paper summarizes results of usability experiments evaluating UML and SysML as software engineering notations for a MDE applied in the domain of manufacturing systems. Modeling MS needs to cover the domain specific characteristics,?i.e.?hybrid process, real time requirements and communication requirements. In addition the paper presents factors, constraint and practical experience for the development of further usability experiments. The paper gives examples of notational expressiveness and weaknesses of UML and SysML. The appendix delivers detailed master models, representing the correct best suited model, and evaluation schemes of the experiment, which is helpful if setting up own empirical experiments.展开更多
WE are in an exciting new intelligent era where various Web 3.0 systems emerge and flourish.[1]–[3].In this new epoch,the collaboration of data and knowledge,humans and machines,actual and virtual worlds is undergoin...WE are in an exciting new intelligent era where various Web 3.0 systems emerge and flourish.[1]–[3].In this new epoch,the collaboration of data and knowledge,humans and machines,actual and virtual worlds is undergoing an unprecedented diversification and community-driven transformation,unveiling an open future full of boundless possibilities.However,the value of dispersed data extends far beyond passive storage and application.展开更多
Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solv...Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure.Compared with the traditional TTM,it has a small size,light weight,high extension ratio,and simple structure.The anti-blossoming and self-unlocking structure of the proposed TTM was described.We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density,and the simulation results showed good consistency.The dynamic equation was derived based on the equivalent model,and the effects of different factors on the vibration characteristics of the TTM were analyzed.The performance parameters were optimized based on a multiobjective genetic algorithm,and prototype production and load experiments were conducted.The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails,which is valuable for future deep space exploration.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
Cell mechanics is essential to cell development and function,and its dynamics evolution reflects the physiological state of cells.Here,we investigate the dynamical mechanical properties of single cells under various d...Cell mechanics is essential to cell development and function,and its dynamics evolution reflects the physiological state of cells.Here,we investigate the dynamical mechanical properties of single cells under various drug conditions,and present two mathematical approaches to quantitatively characterizing the cell physiological state.It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate,and can be mathematically characterized by a linear timeinvariant dynamical model.It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions.Furthermore,it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties,and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model.This study builds a relationship between the cellular mechanical properties and the cellular physiological state,adding information for evaluating drug efficacy.展开更多
Patent foramen ovale(PFO)is a remnant of normal fetal anatomy,which occurs in about 20%–25%of cases.Patients with PFO are at increased risk for migraine,acute limb ischemia secondary to emboli and cryptogenic(no othe...Patent foramen ovale(PFO)is a remnant of normal fetal anatomy,which occurs in about 20%–25%of cases.Patients with PFO are at increased risk for migraine,acute limb ischemia secondary to emboli and cryptogenic(no other identifiable cause)stroke.The traditional approach has been to use a fluoroscopically guided blocking device,but this is contraindicated in patients with severe allergies to contrast media or inability to undergo angiography.With the advancements in technology,ultrasonic robotic systems have become available for medical procedures.In the current study,we reported a case of using the ultrasonic robotic teleoperation system to achieve closure of PFO at the Chinese PLA General Hospital,Beijing,China.展开更多
基金the National Natural Science Foundation of China(62271485,61903363,U1811463,62103411,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘DURING our discussion at workshops for writing“What Does ChatGPT Say:The DAO from Algorithmic Intelligence to Linguistic Intelligence”[1],we had expected the next milestone for Artificial Intelligence(AI)would be in the direction of Imaginative Intelligence(II),i.e.,something similar to automatic wordsto-videos generation or intelligent digital movies/theater technology that could be used for conducting new“Artificiofactual Experiments”[2]to replace conventional“Counterfactual Experiments”in scientific research and technical development for both natural and social studies[2]-[6].Now we have OpenAI’s Sora,so soon,but this is not the final,actually far away,and it is just the beginning.
基金supported in part by the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+3 种基金Open Research Fund of The State Key Laboratory for Management and Control of Complex Systems(20210101)New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)Tianjin University Talent InnovationReward Program for Literature&Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information industry and intelligent technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).And human factors have become crucial in the operations of complex social systems.Traditional mechanical analysis and social simulations alone are powerless for analyzing complex social systems.Against this backdrop,computational experiments have emerged as a new method for quantitative analysis of complex social systems by combining social simulation(e.g.,ABM),complexity science,and domain knowledge.However,in the process of applying computational experiments,the construction of experiment system not only considers a large number of artificial society models,but also involves a large amount of data and knowledge.As a result,how to integrate various data,model and knowledge to achieve a running experiment system has become a key challenge.This paper proposes an integrated design framework of computational experiment system,which is composed of four parts:generation of digital subject,generation of digital object,design of operation engine,and construction of experiment system.Finally,this paper outlines a typical case study of coal mine emergency management to verify the validity of the proposed framework.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
文摘The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.
基金supported by the National Natural Science Foundation of China(62103411)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1)。
文摘The attention is a scarce resource in decentralized autonomous organizations(DAOs),as their self-governance relies heavily on the attention-intensive decision-making process of“proposal and voting”.To prevent the negative effects of pro-posers’attention-capturing strategies that contribute to the“tragedy of the commons”and ensure an efficient distribution of attention among multiple proposals,it is necessary to establish a market-driven allocation scheme for DAOs’attention.First,the Harberger tax-based attention markets are designed to facilitate its allocation via continuous and automated trading,where the individualized Harberger tax rate(HTR)determined by the pro-posers’reputation is adopted.Then,the Stackelberg game model is formulated in these markets,casting attention to owners in the role of leaders and other competitive proposers as followers.Its equilibrium trading strategies are also discussed to unravel the intricate dynamics of attention pricing.Moreover,utilizing the single-round Stackelberg game as an illustrative example,the existence of Nash equilibrium trading strategies is demonstrated.Finally,the impact of individualized HTR on trading strategies is investigated,and results suggest that it has a negative correlation with leaders’self-accessed prices and ownership duration,but its effect on their revenues varies under different conditions.This study is expected to provide valuable insights into leveraging attention resources to improve DAOs’governance and decision-making process.
基金supported by the National Natural Science Foundation of China(62302047,62203250)the Science and Technology Development Fund of Macao SAR(0093/2023/RIA2,0050/2020/A1).
文摘THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to possess a physical“body”to transition from the virtual world to the real world and evolve through interaction with the real environments.In this context,“embodied intelligence”has sparked a new wave of research and technology,leading AI beyond the digital realm into a new paradigm that can actively act and perceive in a physical environment through tangible entities such as robots and automated devices[5].
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by the National Natural Science Foundation of China(62103175)Taishan Scholar Project of Shandong Province of China。
文摘Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.
基金financially supported by the National Key R&D Program Projects of China (No.2021YFB3202402)National Natural Science Foundation of China (No.62173321)。
文摘Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
基金support of the National SKA program of China(Nos.2022SKA0110100 and 2022SKA0110101)the National Natural Science Foundation of China(NSFC,Grant Nos.1236114814,12203061,12273070,and 12303004)。
文摘This paper presents the design,calibration,and survey strategy of the Fast Radio Burst(FRB)digital backend and its real-time data processing pipeline employed in the Tianlai Cylinder Pathfinder Array.The array,consisting of three parallel cylindrical reflectors and equipped with 96 dual-polarization feeds,is a radio interferometer array designed for conducting drift scans of the northern celestial semi-sphere.The FRB digital backend enables the formation of 96 digital beams,effectively covering an area of approximately 40 square degrees with the 3 dB beam.Our pipeline demonstrates the capability to conduct an automatic search of FRBs,detecting at quasi-realtime and classifying FRB candidates automatically.The current FRB searching pipeline has an overall recall rate of88%.During the commissioning phase,we successfully detected signals emitted by four well-known pulsars:PSR B0329+54,B2021+51,B0823+26,and B2020+28.We report the first discovery of an FRB by our array,designated as FRB 20220414A.We also investigate the optimal arrangement for the digitally formed beams to achieve maximum detection rate by numerical simulation.
文摘In this paper, an algorithm designed by the author is used to construct the general solution to difference equations with constant coefficients. It is worth noting that the algorithm does not require any information on the multiple roots of the characteristic equation. This means one does not need to reconfigure the algorithm when changing the multiplicity groups. It is for this reason that the algorithm is called “universal”. In the present study, we solve the task of finding a linear optimal control for linear stationary discrete one- and higher-dimensional systems with scalar control. Moreover, we give analytical expressions for the control that minimize the quadratic criterion and ensure the asymptotic stability of the closed system. The obtained optimal control depends only on the parameters of the initial system and the roots of the characteristic equation.
基金supported by the National Key R&D Program of China(Grant No.2018YFB1304600)the National Natural Science Foundation of China(Grant No.62003337)+1 种基金the Open Fund for State Key Laboratory of Robotics(Grant No.2023O03)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(Grant No.2021-KF-12-05).
文摘Reconfigurable modular robots feature high mobility due to their unconstrained connection manners.Inspired by the snake multi-joint crawling principle,a chain-type reconfigurable modular robot(CRMR)is designed,which could reassemble into various configurations through the compound joint motion.Moreover,an illumination adaptive modular robot identification(IAMRI)algorithm is proposed for CRMR.At first,an adaptive threshold is applied to detect oriented FAST features in the robot image.Then,the effective detection of features in non-uniform illumination areas is achieved through an optimized quadtree decomposition method.After matching features,an improved random sample consensus algorithm is employed to eliminate the mismatched features.Finally,the reconfigurable robot module is identified effectively through the perspective transformation.Compared with ORB,MA,Y-ORB,and S-ORB algorithms,the IAMRI algorithm has an improvement of over 11.6%in feature uniformity,and 13.7%in the comprehensive indicator,respectively.The IAMRI algorithm limits the relative error within 2.5 pixels,efficiently completing the CRMR identification under complex environmental changes.
基金supported by National Key Research and Development Program of China (2021YFB1714300)National Natural Science Foundation of China (62293502, 61831022, 61976211)Youth Innovation Promotion Association CAS。
文摘ChatG PT,an artificial intelligence generated content (AIGC) model developed by OpenAI,has attracted worldwide attention for its capability of dealing with challenging language understanding and generation tasks in the form of conversations.This paper briefly provides an overview on the history,status quo and potential future development of ChatGPT,helping to provide an entry point to think about ChatGPT.Specifically,from the limited open-accessed resources,we conclude the core techniques of ChatGPT,mainly including large-scale language models,in-context learning,reinforcement learning from human feedback and the key technical steps for developing ChatGPT.We further analyze the pros and cons of ChatGPT and we rethink the duality of ChatGPT in various fields.Although it has been widely acknowledged that ChatGPT brings plenty of opportunities for various fields,mankind should still treat and use ChatG PT properly to avoid the potential threat,e.g.,academic integrity and safety challenge.Finally,we discuss several open problems as the potential development of ChatGPT.
文摘Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programming, but are uncertain about the applicability and effort needed to implement those approaches in comparison to classical Programmable Logic Controller?(PLC) programming with IEC 61131-3. The paper summarizes results of usability experiments evaluating UML and SysML as software engineering notations for a MDE applied in the domain of manufacturing systems. Modeling MS needs to cover the domain specific characteristics,?i.e.?hybrid process, real time requirements and communication requirements. In addition the paper presents factors, constraint and practical experience for the development of further usability experiments. The paper gives examples of notational expressiveness and weaknesses of UML and SysML. The appendix delivers detailed master models, representing the correct best suited model, and evaluation schemes of the experiment, which is helpful if setting up own empirical experiments.
基金partially supported by the National Natural Science Foundation of China (62103411)the Science and Technology Development Fund of Macao SAR (0050/2020/A1)。
文摘WE are in an exciting new intelligent era where various Web 3.0 systems emerge and flourish.[1]–[3].In this new epoch,the collaboration of data and knowledge,humans and machines,actual and virtual worlds is undergoing an unprecedented diversification and community-driven transformation,unveiling an open future full of boundless possibilities.However,the value of dispersed data extends far beyond passive storage and application.
基金Supported by National Key R&D Program of China (Grant No.2018YFB1304600)National Natural Science Foundation of China (Grant No.51905527)+1 种基金CAS Interdisciplinary Innovation Team of China (Grant No.JCTD-2018-11)State Key Laboratory of Robotics Foundation of China (Grant No.Y91Z0303)。
文摘Large-scale solar sails can provide power to spacecraft for deep space exploration.A new type of telescopic tubular mast(TTM)driven by a bistable carbon fiber-reinforced polymer tube was designed in this study to solve the problem of contact between the sail membrane and the spacecraft under light pressure.Compared with the traditional TTM,it has a small size,light weight,high extension ratio,and simple structure.The anti-blossoming and self-unlocking structure of the proposed TTM was described.We aimed to simplify the TTM with a complex structure into a beam model with equal linear mass density,and the simulation results showed good consistency.The dynamic equation was derived based on the equivalent model,and the effects of different factors on the vibration characteristics of the TTM were analyzed.The performance parameters were optimized based on a multiobjective genetic algorithm,and prototype production and load experiments were conducted.The results show that the advantages of the new TTM can complete the deployment of large-scale solar sails,which is valuable for future deep space exploration.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos:U1908215,61925307,62003338,and 61933008)CAS Project for Young Scientists in Basic Research(Grant No:YSBR-041)+2 种基金Liaoning Revitalization Talents Program(Grant No:XLYC2002014)Natural Science Foundation of Liaoning Province of China(Grant No:2020-ZLLH-47)Joint fund of Science&Technology Department of Liaoning Province and State Key Laboratory of Robotics,China(Grant No:2019-KF-01-01).
文摘Cell mechanics is essential to cell development and function,and its dynamics evolution reflects the physiological state of cells.Here,we investigate the dynamical mechanical properties of single cells under various drug conditions,and present two mathematical approaches to quantitatively characterizing the cell physiological state.It is demonstrated that the cellular mechanical properties upon the drug action increase over time and tend to saturate,and can be mathematically characterized by a linear timeinvariant dynamical model.It is shown that the transition matrices of dynamical cell systems significantly improve the classification accuracies of the cells under different drug actions.Furthermore,it is revealed that there exists a positive linear correlation between the cytoskeleton density and the cellular mechanical properties,and the physiological state of a cell in terms of its cytoskeleton density can be predicted from its mechanical properties by a linear regression model.This study builds a relationship between the cellular mechanical properties and the cellular physiological state,adding information for evaluating drug efficacy.
基金the National Key Research and Development Program(2021YFC2501106)the Key Discipline Construction Project of Chinese PLA Medical College during the 13^(th) Five-Year Plan Period(A350109).
文摘Patent foramen ovale(PFO)is a remnant of normal fetal anatomy,which occurs in about 20%–25%of cases.Patients with PFO are at increased risk for migraine,acute limb ischemia secondary to emboli and cryptogenic(no other identifiable cause)stroke.The traditional approach has been to use a fluoroscopically guided blocking device,but this is contraindicated in patients with severe allergies to contrast media or inability to undergo angiography.With the advancements in technology,ultrasonic robotic systems have become available for medical procedures.In the current study,we reported a case of using the ultrasonic robotic teleoperation system to achieve closure of PFO at the Chinese PLA General Hospital,Beijing,China.