期刊文献+
共找到289篇文章
< 1 2 15 >
每页显示 20 50 100
Chemical States of Lanthanum in Carbonized La_2O_3-Mo Thermionic Cathode Materials 被引量:4
1
作者 王金淑 周美玲 +3 位作者 王亦曼 张久兴 聂祚仁 左铁镛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第5期538-542,共5页
The chemical reaction between lanthanum oxide and molybdenum carbide was studied by thermodynamic calculation, thermal analysis and in situ X ray Photoelectron Spectroscopy. The theoretical results show that at the ... The chemical reaction between lanthanum oxide and molybdenum carbide was studied by thermodynamic calculation, thermal analysis and in situ X ray Photoelectron Spectroscopy. The theoretical results show that at the environment allowing for the evaporation of lanthanum, such as in high vacuum, La 2O 3 in the La 2O 3 Mo materials can be reduced to metallic lanthanum by molybdenum carbide (Mo 2C). To confirm the conclusion, many analysis methods such as XRD, SPS, and TG DTA were taken. The experimental results show that the chemical state of lanthanum changes during heating. It was proved, for the first time, that reacted metallic lanthanum appears at the surface of this kind of material at high temperature. 展开更多
关键词 chemical state LANTHANUM La 2O 3 Mo CATHODE rare earths
下载PDF
States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions
2
作者 Zhaoyang Han Ling Sun +6 位作者 Yingying Chu Jing Wang Chenyu Wei Qianlei Jiang Changbao Han Hui Yan Xuemei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期197-208,共12页
Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-... Water pollution regarding dyes and heavy metal ions is crucial facing the world.How to effectively separate these contaminants from water has been a key issue.Graphene oxide(GO)promises the greenwater world as a long-lasting spotlight adsorbent material and therefore,harnessing GO has been the research hotspot for over a decade.The state of GO as well as its surface functional groups plays an important role in adsorption.And the way of preparation and structural modification matters to the performance of GO.In this review,the significance of the state of existence of stock GO and surface functional groups is explored in terms of preparation,structural modification,and adsorption.Besides,various adsorbates for GO adsorption are also involved,the discussion of which is rarely established elsewhere. 展开更多
关键词 Stock graphene oxide Surface functional groups Existence state ADSORBATES Enhanced adsorption DYES
下载PDF
Dual-functional MnS_(2)/MnO_(2) heterostructure catalyst for efficient acidic hydrogen evolution reaction and assisted degradation of organic wastewater
3
作者 Wen Kang Zhao Zi Qiang Ma +6 位作者 Jia Yu Zheng Chang Bao Han Kai Ling Zhou Ming Yang Hao De Cai Fang Yi Xia Hui Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期215-224,I0007,共11页
The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC h... The design and synthesis of non-precious metal dual-functional electrocatalysts through the modulation of electronic structure are important for the development of renewable hydrogen energy.Herein,MnS_(2)/MnO_(2)-CC heterostructure dual-functional catalysts with ultrathin nanosheets were prepared by a twostep electrodeposition method for efficient acidic hydrogen evolution reaction(HER) and degradation of organic wastewater(such as methylene blue(MB)).The electronic structure of Mn atoms at the MnS_(2)/MnO_(2)-CC heterostructure interface is reconfigured under the joint action of S and O atoms.Theoretical calculations show that the Mn d-band electron distribution in MnS_(2)/MnO_(2)-CC catalyst has higher occupied states near the Fermi level compared to the MnO_(2) and MnS_(2) catalysts,which indicates that MnS_(2)/MnO_(2)-CC catalyst has better electron transfer capability and catalytic activity.The MnS_(2)/MnO_(2)-CC catalysts require overpotential of only 66 and 116 mV to reach current density of 10 and 100 mA cm^(-2)in MB/H_(2)SO_(4) media.The MnS_(2)/MnO_(2)-CC catalyst also has a low Tafel slope(26.72 mV dec^(-1)) and excellent stability(the performance does not decay after 20 h of testing).In addition,the MB removal efficiency of the MnS_(2)/MnO_(2)-CC catalyst with a better kinetic rate(0.0226) can reach 97.76%,which is much higher than that of the MnO_(x)-CC catalyst(72.10%).This strategy provides a new way to develop efficient and stable non-precious metal dual-functional electrocatalysts for HER and organic wastewater degradation. 展开更多
关键词 Hydrogen evolution reaction(HER) Dual-functional electrocatalysts HETEROSTRUCTURE Catalytic activity Degradation of organic wastewater
下载PDF
Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries 被引量:1
4
作者 Qingwen Li Yulu Liu +7 位作者 Ziheng Zhang Jinjie Chen Zelong Yang Qibo Deng Alexander V.Mumyatov Pavel A.Troshin Guang He Ning Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期64-71,共8页
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ... It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries. 展开更多
关键词 diffusion coefficient dynamic alloy interfaces Li dendrites Li solid solution uniform Li deposition
下载PDF
Preparation and magnetic hardening of low Ti content(Sm,Zr)(Fe,Co,Ti)_(12) magnets by rapid solidification non-equilibrium method
5
作者 Xing-Feng Zhang Li-Bin Liu +3 位作者 Yu-Qing Li Dong-Tao Zhang Wei-Qiang Liu Ming Yue 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期576-580,共5页
The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti eleme... The Sm–Zr–Fe–Co–Ti quinary-alloys with ThMn12 structure has attracted wide attention for ultra-high intrinsic magnetic properties,showing potentiality to be developed into rare-earth permanent magnets.The Ti element in alloys is crucial for phase stability and magnetic properties,and lower Ti content can increase intrinsic magnetic properties but reduce phase stability.In this study,the 1:12 single-phase melt-spun ribbons with low Ti content was successfully prepared using a rapid solidification non-equilibrium method for the Sm1.1Zr_(0.2)Fe_(9.2)Co_(2.3)Ti_(0.5) quinary-alloy.However,this non-equilibrium ribbon did not achieve good magnetic hardening due to the uneven microstructure and microstrain.Then,annealing was carried out to eliminate micro-strain and homogenize microstructure,therefore,remanence and coercivity were significantly improved even the precipitation of a small amount of a-Fe phase which were not conducive to coercivity.The remanence of 86.1 emu/g and coercivity of 151 kA/m was achieved when annealing at 850℃ for 45 min.After hot pressing,under the action of high temperature and pressure,a small portion of ThMn12 phases in the magnet decompose into Sm-rich phases and a-Fe,while remanence of 4.02 kGs(1 Gs=10^(-4) T),and coercivity of 1.12 kOe(1 Oe=79.5775 A·m^(-1))were still acquired.Our findings can provide reference for exploring practical permanent magnets made of 1:12 type quinary-alloys. 展开更多
关键词 magnetic materials (Sm Zr)(Fe CO Ti)_(12) magnets nanocrystalline magnet microstructure
下载PDF
Photothermal catalytic C-C coupling to ethylene from CO_(2) with high efficiency by synergistic cooperation of oxygen vacancy and half-metallic WTe_(2)
6
作者 Xiaoyue Zhang Yong Yang +4 位作者 Yingjie Hu Lijun Xiong Tianyu Wang Panjie Li Jinyou Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期547-556,I0014,共11页
Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a... Photothermal catalytic CO_(2) conversion provides an effective solution targeting carbon neutrality by synergistic utilization of photon and heat.However,the C-C coupling initiated by photothermal catalysis is still a big challenge.Herein,a three-dimensional(3D)hierarchical W_(18)O_(49)/WTe_(2) hollow nanosphere is constructed through in-situ embodying of oxygen vacancy and tellurium on the scaffold of WO_(3).The light absorption towards near-infrared spectral region and CO_(2) adsorption are enhanced by the formation of half-metal WTe_(2) and the unique hierarchical hollow architecture.Combining with the generation of oxygen vacancy with strengthened CO_(2) capture,the photothermal effect on the samples can be sufficiently exploited for activating the CO_(2) molecules.In particular,the close contact between W_(18)O_(49)and WTe_(2) largely promotes the photoinduced charge separation and mass transfer,and thus the~*CHO intermediate formation and fixedness are facilitated.As a result,the C-C coupling can be evoked between tungsten and tellurium atoms on WTe_(2).The ethylene production by optimized W_(18)O_(49)/WTe_(2) reaches 147.6μmol g^(-1)with the selectivity of 80%.The in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)calculations are performed to unveil the presence and significance of aldehyde intermediate groups in C-C coupling.The half-metallic WTe_(2) cocatalyst proposes a new approach for efficient CO_(2) conversion with solar energy,and may especially create a new platform for the generation of multi-carbon products. 展开更多
关键词 Photothermal catalysis HALF-METAL WTe_(2) C–C coupling Carbon neutrality
下载PDF
Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
7
作者 王刚 林君浩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期9-29,共21页
Transmission electron microscopy(TEM)offers unparalleled atomic-resolution imaging of complex materials and heterogeneous structures.However,high-energy imaging electrons can induce structural damage,posing a challeng... Transmission electron microscopy(TEM)offers unparalleled atomic-resolution imaging of complex materials and heterogeneous structures.However,high-energy imaging electrons can induce structural damage,posing a challenge for electron-beam-sensitive materials.Cryogenic TEM(Cryo-TEM)has revolutionized structural biology,enabling the visualization of biomolecules in their near-native states at unprecedented detail.The low electron dose imaging and stable cryogenic environment in Cryo-TEM are now being harnessed for the investigation of electron-beam-sensitive materials and low-temperature quantum phenomena.Here,we present a systematic review of the interaction mechanisms between imaging electrons and atomic structures,illustrating the electron beam-induced damage and the mitigating role of Cryo-TEM.This review then explores the advancements in low-dose Cryo-TEM imaging for elucidating the structures of organic-based materials.Furthermore,we showcase the application of Cryo-TEM in the study of strongly correlated quantum materials,including the detection of charge order and novel topological spin textures.Finally,we discuss the future prospects of Cryo-TEM,emphasizing its transformative potential in unraveling the complexities of materials and phenomena across diverse scientific disciplines. 展开更多
关键词 cryogenic TEM low dose imaging quantum materials
下载PDF
A triboelectric nanogenerator based on a spiral rotating shaft for efficient marine energy harvesting of the hydrostatic pressure differential
8
作者 Xuemei Song Yuan Chao Pan +4 位作者 Chang Bao Han Chang Xin Liu Yaxiaer Yalikun Hui Yan Yang Yang 《Materials Reports(Energy)》 EI 2024年第3期69-76,共8页
Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the s... Equipment used in underwater sensing and exploration typically relies on cables or batteries for energy supply,resulting in a limited and inconvenient energy supply and marine environmental pollution that hinder the sustainable development of distributed ocean sensing networks.Here,we design a deep-sea differential-pressure triboelectric nanogenerator(DP-TENG)based on a spiral shaft drive using modified polymer materials to harness the hydrostatic pressure gradient energy at varying ocean depths to power underwater equipment.The spiral shaft structure converts a single compression into multiple rotations of the TENG rotor,achieving efficient conversion of differential pressure energy.The multi-pair electrode design enables the DP-TENG to generate a peak current of 61.7μA,the instantaneous current density can reach 0.69μA cm^(-2),and the output performance can be improved by optimizing the spiral angle of the shaft.The DP-TENG can charge a 33μF capacitor to 17.5 V within five working cycles.It can also power a digital calculator and light up 116 commercial power light-emitting diodes,demonstrating excellent output capability.With its simple structure,low production cost,and small form factor,the DP-TENG can be seamlessly integrated with underwater vehicles.The results hold broad prospects for underwater blue energy harvesting and are expected to contribute to the development of self-powered equipment toward emerging“smart ocean”and blue economy applications. 展开更多
关键词 Triboelectric nanogenerators Blue energy Energy harvesting Differential pressure energy Self-power sensor
下载PDF
Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery 被引量:11
9
作者 Xiao-li Ming Feng +1 位作者 Li-wen Zhang Zuo-ren Nie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1599-1617,共19页
Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary n... Molten salt is an excellent medium for chemical reaction,energy transfer,and storage.Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources.Among these technologies,molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials.From the perspective of molten salt characteristics,the application of molten salts in chemistry,electrochemistry,energy,and thermal storage should be comprehensively elaborated.This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes,such as magnet scrap,nuclear waste,and cemented carbide scrap.Attention is placed on the development of various electrolysis methods for different metal containing wastes,overcoming some problems in electrolytes,electrodes,and electrolytic cells.Special focus is given to future development directions for current associated processing obstacles. 展开更多
关键词 molten salt application molten salt electrochemistry resource recycling cemented carbide scrap
下载PDF
Recent progress of efficient utilization of titanium-bearing blast furnace slag 被引量:6
10
作者 Yongfeng Cai Ningning Song +3 位作者 Yunfei Yang Lingmin Sun Peng Hu Jinshu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期22-31,共10页
Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization an... Titanium-bearing blast furnace slag(BFS)has valuable compositions and potential environmental hazardousness.Thus,developing efficient and green approaches to utilize BFS is highly desired for resource economization and environmental protection.In the past decades,many attempts have been adopted to reuse BFS efficiently,and significant advances in understanding the fundamental features and the development of efficient approaches have been achieved.This review provides a comprehensive overview of the latest progress on the efficient utilization of BFS and discusses the mechanism and characteristics of various approaches,along with their application prospects.In particular,the extraction and enrichment of titanium-bearing phases from BFS are highlighted because of the high availability of titanium resources.This systemic and comprehensive review may benefit the design of new and green utilization routes with high efficiency and low cost. 展开更多
关键词 titanium-bearing blast furnace slag utilization approach enrichment process extracting titanium MECHANISM
下载PDF
A Novel Approach for the Effective Thermal Conductivity of Porous Ceramics 被引量:8
11
作者 ZHU Qiang ZHANG Fan-wei +2 位作者 ZHANG Yue ZHANG Da-hai LI Zhong-ping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期244-247,共4页
A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was... A new approach in combination of the effective medium theory with the equivalent unit in numerical simulation was developed to study the effective thermal conductivity of porous ceramics. The finite element method was used to simulate the heat transfer process which enables to acquire accurate results through highly complicated modeling and intensive computation. An alternative approach to mesh the material into small cells was also presented. The effective medium theory accounts for the effective thermal conductivity of cells while the equivalent unit is subsequently applied in numerical simulation to analyze the effective thermal conductivity of the porous ceramics. A new expression for the effective thermal conductivity, allowing for some structure factors such as volume fraction of pores and thermal conductivity, was put forward, and the results of its application was proved to be close to those of the mathematical simulation. 展开更多
关键词 effective thermal conductivity porous ceramics equivalent unit numerical simulation
下载PDF
Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell 被引量:6
12
作者 Kaili Wang Fei Wang +1 位作者 Yunfeng Zhao Weiqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期251-261,I0008,共12页
The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous stud... The development of advanced electrocatalysts for efficient catalyzing ethanol oxidation reaction(EOR)and oxygen reduction reaction(ORR) is significant for direct ethanol fuel cells(DEFCs).However,in many previous studies,the major difficulties including lower utilization efficiency and weaker anti-CO-poison ability of Pt hamper the practical testing of such DEFCs,Herein,ternary Pt22Pd27C51 ultrathin(~5 nm)NWs are fabricated via a facile surfactant-free strategy.The surface and electronic structures of Pt22Pd27Cu51 NWs are further tailored via acid-etching treatment.The resulted PtPdCu NWs with an optimal atomic Pt/Pd/Cu ratio of 36:41:23 display excellent specific activities towards EOR(4.38 mA/cm^(2))and ORR(1.16 mA/cm^(2)),which are 19.8-and 5.7-folds larger than that of Pt/C,respectively.A singlecell was fabricated using Pt36Pd41Cu23 NWs as electrocatalyst in both anode and cathode with Pt loading of 1.2 mgpt/cm^(2).The power density measured at 80 ℃ is 21.7 mW/cm^(2),which is ~3.9 folds enhancement relative to that fabricated by using Pt/C(2 mgPt/cm^(2)).The enhanced catalytic performance of Pt36Pd41Cu23NWs could be attributed to that synergistic effect between Pt,Pd and Cu enhances CO anti-poisoning ability and promotes the C-C bond cleavage.This work provides a promising strategy for developing efficient electrocatalysts for DEFCs. 展开更多
关键词 Acidic DEFCs Nanowire networks materials Platinum-palladium-copper Surface-component tailoring
下载PDF
A multi-layered Ti3C2/Li2S composite as cathode material for advanced lithium-sulfur batteries 被引量:5
13
作者 Xin Liang Jufeng Yun +4 位作者 Kun Xu Hongfa Xiang Yong Wang Yi Sun Yan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期176-181,共6页
Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2... Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively. 展开更多
关键词 Multi-layered Ti3C2 Li2S Lithium-sulfur batteries Activation voltage barrier Shuttle effect
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
14
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
Thermoelectric Properties of Ce_x Co_4Sb_(12) Prepared by MA-SPS 被引量:2
15
作者 刘科高 张久兴 +3 位作者 路清梅 刘丹敏 张隆 周美玲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期390-394,共5页
Starting with elementary powders, thermoelectric materials Ce_ x Co_4Sb_(12) were prepared by mechanical alloying and spark plasma sintering (MA-SPS). XRD analyses reveal that the expected major phase, named skutterud... Starting with elementary powders, thermoelectric materials Ce_ x Co_4Sb_(12) were prepared by mechanical alloying and spark plasma sintering (MA-SPS). XRD analyses reveal that the expected major phase, named skutterudite was formed in MA process and was kept after SPS. The thermoelectric properties of MA-SPS samples including resistivity, Seebeck coefficient, power factor, thermal conductivity and the dimensionless figure of merit ( ZT ) were studied by varying Ce content and temperature. Depending on Ce levels, both P and N types of thermoelectric semiconductors were obtained. MA-SPS sintered Ce_(1.0)Co_4Sb_(12) exhibits the highest ZT in the range of 100~500 ℃ and the maximum ZT is found at x =1.0 and 400 ℃. 展开更多
关键词 thermoelectric material mechanical alloying spark plasma sintering Ce_ x Co_4Sb_(12) rare earths
下载PDF
Progress in recycling of Nd–Fe–B sintered magnet wastes 被引量:2
16
作者 Ming Yue Xiaowen Yin +1 位作者 Weiqiang Liu Qingmei Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期14-24,共11页
Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resourc... Significant efforts have been put into the recycling of bulk Nd–Fe–B sintered magnet wastes around the world in the past decade because bulk Nd–Fe–B sintered magnet wastes are valuable secondary rare-earth resources.There are two major facts behind the efforts.First, the waste magnets contain total rare-earth content as high as more than 30 wt.%, which is higher than most natural rare-earth mines.Second, the waste magnets maintain the physical and chemical properties of the original magnets even with deterioration of the properties on surfaces due to corrosion and contamination.In this review,various techniques for recycling bulk Nd–Fe–B sintered magnet wastes, the overall properties of the recycled Nd–Fe–B sintered magnets, and the mass production of recycled magnets from the wastes are reviewed. 展开更多
关键词 Nd–Fe–B sintered MAGNET RARE-EARTH resource RECYCLING
下载PDF
Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery 被引量:2
17
作者 Zhiyuan Lin Xianwei Guo +3 位作者 Yubo Yang Mingxue Tang Qi Wei Haijun Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期67-74,I0003,共9页
Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes a... Solid polymer electrolytes have been considered as the promising candidates to improve the safety and stability of high-energy lithium metal batteries.However,the practical applications of solid polymer electrolytes are still limited by the low ionic conductivity,poor interfacial contact with electrodes,narrow electrochemical window and weak mechanical strength.Here,a series of novel block copolymer electrolytes with three-dimensional networks are designed by cross-linked copolymerization of the polyethylene glycol soft segments and hexamethylene diisocyanate trimer hard segments.Their ionic migration performances and interface compatibilities with Li metal anode have been optimized delicately by tailoring the ratio of these functional units.The optimized block copolymer electrolyte has shown an amorphous crystalline structure,a high ionic conductivity of ~5.7×10^(-4)S cm^(-1),high lithium ion transference number(~0.49),wide electrochemical window up to ~4.65 V(vs.Li+/Li) and favorable mechanical strength at 55℃.Furthermore,the enhanced interface compatibility can well support the normal operations of lithium metal batteries using both LiFePO4 and LiNi0.8Co0.15Al0.05O2 cathodes.This study not only paves a new way to develop solid polymer electrolyte with optimizing functional units,but also provides a polymer electrolyte design strategy for the application demand of lithium metal battery. 展开更多
关键词 Block copolymer electrolyte Functional units Ionic migration performance Interface compatibility Lithium metal battery
下载PDF
Semi-quantitative study on the Staebler-Wronski effect of hydrogenated amorphous silicon films prepared with HW-ECR-CVD system 被引量:2
18
作者 丁毅 刘国汉 +5 位作者 陈光华 贺德衍 朱秀红 张文理 田凌 马占杰 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期813-817,共5页
The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during i... The method of numerical simulation is used to fit the relationship between the photoconductivity in films and the illumination time. The generation and process rule of kinds of different charged defect states during illumination are revealed. It is found surprisingly that the initial photoconductivity determines directly the total account of photoconductivity degradation of sample. 展开更多
关键词 hydrogenated amorphous silicon Staebler-Wronski effect microwave electron cyclotronresonant chemical vapour deposition charged defects
下载PDF
Charge Transport Properties of Tetrabenz[a,c,h,j]-anthracene Derivatives 被引量:3
19
作者 陈自然 余文浩 李权 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第6期851-856,共6页
Charge transport properties of F, OH, OCH3, SH and SCH3-substituted tetra- benz[a,c,h,j]- anthracene derivative molecules have been investigated theoretically at the B3LYP/6-31G** level using Marcus theory. The resu... Charge transport properties of F, OH, OCH3, SH and SCH3-substituted tetra- benz[a,c,h,j]- anthracene derivative molecules have been investigated theoretically at the B3LYP/6-31G** level using Marcus theory. The results showed that at 300 K, the hole or electron transport capability of F or SH-substituted molecules was better obviously than that of OH or OCH3-substituted molecules, The electron transport capability of SCH3-substituted and F or SH-substituted molecules was superior to their hole transport capability, respectively. F, SH or SCH3-substituted tetrabenz[a,c,h,j]-anthracene derivative molecules can be used as electron transport materials. 展开更多
关键词 tetrabenz[a c h j]-anthracene charge transport marcus theory theoretical calculation
下载PDF
TiO2-incorporated polyelectrolyte composite membrane with transformable hydrophilicity/hydrophobicity for nanofiltration separation 被引量:2
20
作者 Yahua Lu Zhenping Qin +3 位作者 Naixin Wang Hongxia Guo Quanfu An Yucang Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第10期2533-2541,共9页
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(d... The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property. 展开更多
关键词 Counterion exchange Wettability REVERSIBILITY Dopamine TiO2-incorporated polyelectrolyte composite membrane (non)aqueous nanofiltration
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部