Wet etch process is applied to expose the bulk damage sites in KDP crystals to the surface for the examination by scanning electron microscopy(SEM)and optical microscopy.The damage sites induced by 1064 nm laser consi...Wet etch process is applied to expose the bulk damage sites in KDP crystals to the surface for the examination by scanning electron microscopy(SEM)and optical microscopy.The damage sites induced by 1064 nm laser consist of three distinct regions:a core,an outer region of modified material,and some oriented cracks.Laser irradiated with 355 nm results in an increase of damage density,a decrease of core diameter and,rarely,occurrence of the crack.WavelengKey Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences,Shanghai 201800th dependence of the damage feature suggests that a repulsive force exists among the adjacent plasmas,which prevents further expansion of plasma and decreases the size of plasma.The deposited energy absorbed by the smaller plasma may not be able to generate the crack.展开更多
The laser damage resistances of four crystals(CaF_(2),MgF_(2),Al_(2)O_(3),and SiO_(2))and fused silica(JGS1)irradiated at 355nm(8 ns,300-on-1)are reported.The laser-induced damage threshold is measured using a tripled...The laser damage resistances of four crystals(CaF_(2),MgF_(2),Al_(2)O_(3),and SiO_(2))and fused silica(JGS1)irradiated at 355nm(8 ns,300-on-1)are reported.The laser-induced damage threshold is measured using a tripled Nd:YAG laser system.The results obtained from the pure crystals are in accordance with their specific optical,mechanical,and thermal properties.An empirical law based on the Franz–Keldysh effect can interpret the experimental results.展开更多
The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indiu...The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.展开更多
Sb is a classic material of a super-resolution near field structure (super-RENS) mask layer in which the optical switch formation is often realized by nanosecond laser pulse stimulation. We achieve fast and repeatab...Sb is a classic material of a super-resolution near field structure (super-RENS) mask layer in which the optical switch formation is often realized by nanosecond laser pulse stimulation. We achieve fast and repeatable optical switching driven by picosecond laser pulses in a proper fluence range on Sb thin films. The optical properties of Sb thin films before and after switching are studied by surface-sensitive micro-area ellipsometry. The change of optical constants after switching is less than 2% in the whole visible range. The Sb mask layer is shown to be very promising for ultrafast super-resolution optical storage applications.展开更多
High-resistivity β-Ga203 thin films were grown on Si-doped n-type conductive β-Ga203 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of...High-resistivity β-Ga203 thin films were grown on Si-doped n-type conductive β-Ga203 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6 x 10^6 %. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 x 10^18 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 x 10%2% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga203 thin films and the n-type conductive β-Ga203 single-crystal substrate.展开更多
Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated...Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated with 2μm femtosecond pulse lasers (80fs, 1kHz). It is found that the Ta2O5/SiO2 HR coating has a higher capability of laser damage resistance than the ZrO2/SiO2 HR coating in the 2μm femtosecond regime. The scanning electron microscope results show that the damage sites of the ZrO2//SiO2 FIR coating have a relatively porous structure, the loose structure of coatings will provide more sites for water molecules, and the LIDTs of HR coatings will be reduced as a result of the strong water absorption at the wavelength of 2 μm.展开更多
The electronic structure and geometric distribution of phosphor replaced by sulfur in potassium dihydrogen phosphate (KDP) are investigated by first-principles calculations. The point defect narrows down the energy ...The electronic structure and geometric distribution of phosphor replaced by sulfur in potassium dihydrogen phosphate (KDP) are investigated by first-principles calculations. The point defect narrows down the energy gap to about 4.9eV, corresponding to a two-photon absorption of 355nm after correction. This can explain the decrease of the laser damage resistance in KDP crystals. Moreover, the defects twist the crystal structure and weaken bonds, especially the O-H bonds, so these bonds may be the first sites to crack under laser irradiation.展开更多
CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, ...CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm^2,and 5.9%, respectively.In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps.The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm.The maximum output power is 110 mW with slope efficiency of 7.1%.Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.展开更多
Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of ma...Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of material,and degradation of device performance.The basic current–voltage behavior of perovskite materials is intricate due to the mixed electronic–ionic characteristic,which is still poorly understood in these semiconductors.Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration.Herein,we explore the pulse-voltage(PV)method on methylammonium lead tribromide single crystals to protect the device from the ion migration.A guideline is summarized through the analysis of measurement history and condition parameters.The influence of the ion migration on current–voltage measurement,such as repeatability and hysteresis loop,is under controlled.An application of the PV method is demonstrated on the activation energy of conductivity.The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method,introducing new physical insight on the current–voltage behavior of perovskite materials.The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.展开更多
Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent p...Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.展开更多
We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polari...We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.展开更多
<div style="text-align:justify;"> The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO<sub>...<div style="text-align:justify;"> The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO<sub>2</sub> single layers prepared by ion beam sputtering are studied. The HfO<sub>2</sub> amorphous single layers have porous surface morphologies. Different processes will cause differences in coatings absorption and surface morphology, which in turn will cause changes in the spectral transmittance curve. The ion beam sputtering HfO<sub>2</sub> single layers have high content of argon (4.5% - 8%). The laser damage of HfO<sub>2</sub> single layers is related to argon inclusions and non-stoichiometric defects. The changes of argon flux and beam voltage have a greater impact on argon content and O/Hf ratio. When the argon content in the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds of the HfO<sub>2</sub> single layers are higher. </div>展开更多
This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The t...This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The thermal stress,interface bubbles and residual refiectivity,which are due to high-temperature casting and bonding during the monolithic edge-cladding process,are simulated and determined.The applied mould is optimized to a rectangular cavity mould,and the casting temperature is optimized to 1000℃.The resulting lower bubble density makes the mean residual refiectivity as low as 6.75×10^(-5),which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk,and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm,which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm.After fine annealing at the optimized 520℃,the maximum optical retardation is as low as 4.8 nm/cm,and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength(632.8 nm).An N31 elliptical disk with the size of 194 mm×102 mm×40 mm can be successfully cladded by the optimized monolithic edge-cladding process,whose edge-cladded disk with the size of 200 mm×108 mm×40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.展开更多
Multilayer dielectric gratings(MLDGs)are crucial for pulse compression in picosecond-petawatt laser systems.Bulged nodular defects,embedded in coating stacks during multilayer deposition,influence the lithographic pro...Multilayer dielectric gratings(MLDGs)are crucial for pulse compression in picosecond-petawatt laser systems.Bulged nodular defects,embedded in coating stacks during multilayer deposition,influence the lithographic process and performance of the final MLDG products.In this study,the integration of nanosecond laser conditioning(NLC)into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films(MLDFs)and final grating products to improve laser-induced damage performance.The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance,which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold(nanosecond-LIDT)of the unconditioned MLDGs.Furthermore,the picosecond-LIDT of the nodular ej ection pit conditioned on the MLDFs was approximately 40%higher than that of the nodular defects,and the loss of the grating structure surrounding the nodular defects was avoided.Therefore,NLC is an effective strategy for improving the laser damage resistance of MLDGs.展开更多
The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown e...The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown electric field of about8 MV/cm. Low cost and high quality of large β-Ga_2O_3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga_2O_3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga_2O_3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.展开更多
An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm wit...An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.展开更多
A thermal model is considered in order to better understand the mechanism of laser induced damage in KDP and DKDP crystals. We demonstrate that the expressions of pinpoint density and damage probability, predicted by ...A thermal model is considered in order to better understand the mechanism of laser induced damage in KDP and DKDP crystals. We demonstrate that the expressions of pinpoint density and damage probability, predicted by the thermal model, are consistent with the experimental data. We also discuss the effect of particle interaction on the thermal model.展开更多
By testing the number increase and size growth of surface and bulk laser induced damage in KDP and DKDP crystals, we observe different growth characteristics of surface and bulk damage under multiple 355nm laser irrad...By testing the number increase and size growth of surface and bulk laser induced damage in KDP and DKDP crystals, we observe different growth characteristics of surface and bulk damage under multiple 355nm laser irradiations. The size of the surface damage grows exponentially, but that of the bulk damage does not grow. In contrast, the bulk damage number increases, but that of surface damage does not increase significantly. We attribute the differences to the different formation of the damage initiators and the different damage testing volumes.展开更多
Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-r...Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold(LIDT),which includes defects, surface roughness, packing density and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm^2 to 12 J/cm^2, i.e., 50% increase, after the film has been irradiated by 2.2×10^(13)/cm^2 β-ray, the particle irradiation can be used as a controllable and desirable postprocessing method to improve the resistance to laser induced damage.展开更多
Ta5+doped β-Ga2O3 single crystals were grown by using the optical floating zone method, and then annealed in the air and nitrogen gas at 1400℃ for 20 hours.The transmittance spectra, photoluminescence(PL), x-ray irr...Ta5+doped β-Ga2O3 single crystals were grown by using the optical floating zone method, and then annealed in the air and nitrogen gas at 1400℃ for 20 hours.The transmittance spectra, photoluminescence(PL), x-ray irradiation spectra, and PL decay profiles of the samples were measured at room temperature.The relevant results show that the optical transmittance of the samples annealed in the air or nitrogen gas was improved.By drawing the(ahv)2–hv graph,it can be seen that the band gap decreased after being annealed in the air, but increased in nitrogen gas.The PL spectra and x-ray irradiation spectra show that the luminescent intensity of the sample annealed in the air increased substantially,while decreased for the sample annealed in nitrogen.The PL decay time of the Ta:β-Ga2O3 annealed in the air increased significantly compared with that of the Ta:β-Ga2O3 sample without annealing, but the tendency after annealing in nitrogen gas was opposite.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 60878045.
文摘Wet etch process is applied to expose the bulk damage sites in KDP crystals to the surface for the examination by scanning electron microscopy(SEM)and optical microscopy.The damage sites induced by 1064 nm laser consist of three distinct regions:a core,an outer region of modified material,and some oriented cracks.Laser irradiated with 355 nm results in an increase of damage density,a decrease of core diameter and,rarely,occurrence of the crack.WavelengKey Laboratory of Materials for High Power Laser,Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences,Shanghai 201800th dependence of the damage feature suggests that a repulsive force exists among the adjacent plasmas,which prevents further expansion of plasma and decreases the size of plasma.The deposited energy absorbed by the smaller plasma may not be able to generate the crack.
基金Supported by the National Natural Science Foundation of China under Grant No 11104293.
文摘The laser damage resistances of four crystals(CaF_(2),MgF_(2),Al_(2)O_(3),and SiO_(2))and fused silica(JGS1)irradiated at 355nm(8 ns,300-on-1)are reported.The laser-induced damage threshold is measured using a tripled Nd:YAG laser system.The results obtained from the pure crystals are in accordance with their specific optical,mechanical,and thermal properties.An empirical law based on the Franz–Keldysh effect can interpret the experimental results.
基金the National Natrural Science Foundation of China(Nos. 50902137 and 60937003)
文摘The preparation and characteristics of a new transparent glass ceramic were described. Crystal phase particles with nanometer size were successfully precipitated in glass matrix, which was confirmed to be one of indium aluminum zinc oxide compounds (InxAlrZn2O). The presence of aluminum (A1) and indium (In) impurities in the zinc oxides (ZnO) crystal lattice leads to some changes of the carrier concentration in the material and then promote the sharply changes of transmission spectra in IR range wavelength. And subsequently, the IR cut-off edge blue shifted from 5.5 pm in base glass to 3 μm in transparent glass ceramic sample. Furthermore, passive Q switched 1.54 ktm Er glass laser pulses with pulse energy of 10 mJ and pulse width of 800 ns were successfully obtained by using the cobalt doped transparent glass ceramic as a saturable absorber.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50872139, 10874247, 60644002 and 60678009, the National Basic Research Program of China (2007CB935402), and Chinese Academy of Sciences (KJCX2-YW-M06).
文摘Sb is a classic material of a super-resolution near field structure (super-RENS) mask layer in which the optical switch formation is often realized by nanosecond laser pulse stimulation. We achieve fast and repeatable optical switching driven by picosecond laser pulses in a proper fluence range on Sb thin films. The optical properties of Sb thin films before and after switching are studied by surface-sensitive micro-area ellipsometry. The change of optical constants after switching is less than 2% in the whole visible range. The Sb mask layer is shown to be very promising for ultrafast super-resolution optical storage applications.
基金supported by the National Nature Science Foundation of China(Grant No.61223002)the Science and Technology Commission of Shanghai Municipality,China(Grant No.13111103700)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2012018530003)
文摘High-resistivity β-Ga203 thin films were grown on Si-doped n-type conductive β-Ga203 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6 x 10^6 %. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 x 10^18 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 x 10%2% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga203 thin films and the n-type conductive β-Ga203 single-crystal substrate.
文摘Ta2O5/SiO2 and ZrO2/SiO2 high reflecting (HR) coatings are prepared by ion beam sputtering and electron beam evaporation, respectively. The laser-induced damage thresholds (LIDTs) of these samples are investigated with 2μm femtosecond pulse lasers (80fs, 1kHz). It is found that the Ta2O5/SiO2 HR coating has a higher capability of laser damage resistance than the ZrO2/SiO2 HR coating in the 2μm femtosecond regime. The scanning electron microscope results show that the damage sites of the ZrO2//SiO2 FIR coating have a relatively porous structure, the loose structure of coatings will provide more sites for water molecules, and the LIDTs of HR coatings will be reduced as a result of the strong water absorption at the wavelength of 2 μm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10676019 and 50721002, the Program for New Century Excellent Talents in University (NCET-10-0526), and the Natural Science Foundation of Shandong Province (ZR2009FM015).
文摘The electronic structure and geometric distribution of phosphor replaced by sulfur in potassium dihydrogen phosphate (KDP) are investigated by first-principles calculations. The point defect narrows down the energy gap to about 4.9eV, corresponding to a two-photon absorption of 355nm after correction. This can explain the decrease of the laser damage resistance in KDP crystals. Moreover, the defects twist the crystal structure and weaken bonds, especially the O-H bonds, so these bonds may be the first sites to crack under laser irradiation.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant Nos.51472162,51672177,and 61475171)the Talent Introduction Research Project of Shanghai Institute of Technology,China(Grant No.YJ 2018-8)
文摘CsPbBr3 nanocrystal is used as the saturable absorber(SA) for mode-locking Tm-doped fiber laser in a ring fiber cavity.The modulation depth, saturable intensity, and non-saturable loss of the fabricated SA are 14.1%, 2.5 MW/cm^2,and 5.9%, respectively.In the mode-locking operation, the mode-locked pulse train has a repetition rate of 16.6 MHz with pulse width of 24.2 ps.The laser wavelength is centered at 1992.9 nm with 3-dB spectrum width of 2.5 nm.The maximum output power is 110 mW with slope efficiency of 7.1%.Our experiment shows that CsPbBr3 nanocrystal can be used as an efficient SA in the 2-μm wavelength region.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805263)Shanghai Sailing Program,China(Grant No.18YF1426400).
文摘Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of material,and degradation of device performance.The basic current–voltage behavior of perovskite materials is intricate due to the mixed electronic–ionic characteristic,which is still poorly understood in these semiconductors.Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration.Herein,we explore the pulse-voltage(PV)method on methylammonium lead tribromide single crystals to protect the device from the ion migration.A guideline is summarized through the analysis of measurement history and condition parameters.The influence of the ion migration on current–voltage measurement,such as repeatability and hysteresis loop,is under controlled.An application of the PV method is demonstrated on the activation energy of conductivity.The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method,introducing new physical insight on the current–voltage behavior of perovskite materials.The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.
基金Funded by the China Postdoctoral Science Foundation(No.2012M511801)the National Natural Science Foundation of China(Nos.11474104 and 51372092)
文摘Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.
基金Project supported by the National Natural Science Foundation of China(Grant No.61605107)Young Eastern Scholar Program at Shanghai Institutions of Higher Learning,China(Grant No.QD2015027)+2 种基金the“Young 1000 Talent Plan”Program of Chinathe Open Program of the State Key Laboratory of Advanced Optical Communication Systems and Networks at Shanghai Jiaotong University,China(Grant No.2017GZKF17)RAEng/The Leverhulme Trust Senior Research Fellowships(Grant No.LTSRF1617/13/57).
文摘We demonstrate a passively harmonic mode-locked(PHML) fiber laser operating at the L-band using carbon nanotubes polyvinyl alcohol(CNTs-PVA) film. Under suitable pump power and an appropriate setting of the polarization controller(PC), the 54^(th) harmonic pulses at the L-band are generated with the side mode suppression ratio(SMSR) better than 44 dB and a repetition frequency of 503.37 MHz. Further increasing the pump power leads to a higher frequency of 550 MHz with compromised stability of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of L-band PHML pulses from an Er-doped fiber laser based on CNTs.
文摘<div style="text-align:justify;"> The effects of the main parameters of argon flux, oxygen flux and beam voltage on the surface morphology, transmittance spectrum and laser damage of the HfO<sub>2</sub> single layers prepared by ion beam sputtering are studied. The HfO<sub>2</sub> amorphous single layers have porous surface morphologies. Different processes will cause differences in coatings absorption and surface morphology, which in turn will cause changes in the spectral transmittance curve. The ion beam sputtering HfO<sub>2</sub> single layers have high content of argon (4.5% - 8%). The laser damage of HfO<sub>2</sub> single layers is related to argon inclusions and non-stoichiometric defects. The changes of argon flux and beam voltage have a greater impact on argon content and O/Hf ratio. When the argon content in the coatings is lower and the O/Hf ratio is higher, the laser damage thresholds of the HfO<sub>2</sub> single layers are higher. </div>
基金the Nd-glass project from National Major Science and Technology Project of China(No.G-GFZX0205010202.1)the Shanghai International Science&Technology Cooperation Program(No.18590712900)。
文摘This paper investigates the monolithic edge-cladding process for the elliptical disk of N31-type Nd-doped phosphate laser glass,which will be utilized under liquid cooling conditions for high-power laser systems.The thermal stress,interface bubbles and residual refiectivity,which are due to high-temperature casting and bonding during the monolithic edge-cladding process,are simulated and determined.The applied mould is optimized to a rectangular cavity mould,and the casting temperature is optimized to 1000℃.The resulting lower bubble density makes the mean residual refiectivity as low as 6.75×10^(-5),which is enough to suppress the amplified spontaneous emission generated in the Nd-glass disk,and the resulting maximum optical retardation is converged to 10.2–13.3 nm/cm,which is a favourable base for fine annealing to achieve the stress specification of less than or equal to 5 nm/cm.After fine annealing at the optimized 520℃,the maximum optical retardation is as low as 4.8 nm/cm,and the minimum transmitted wavefront peak-to-valley value is 0.222 wavelength(632.8 nm).An N31 elliptical disk with the size of 194 mm×102 mm×40 mm can be successfully cladded by the optimized monolithic edge-cladding process,whose edge-cladded disk with the size of 200 mm×108 mm×40 mm can achieve laser gain one-third higher than that of an N21-type disk of the same size.
基金supported by the National Key R&D Program of China(Grant No.2018YFE0115900)the Key Foreign Cooperation Projects of Bureau of the International Cooperation of Chinese Academy of Sciences(Grant No.181231KYSB20210001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA25020314).
文摘Multilayer dielectric gratings(MLDGs)are crucial for pulse compression in picosecond-petawatt laser systems.Bulged nodular defects,embedded in coating stacks during multilayer deposition,influence the lithographic process and performance of the final MLDG products.In this study,the integration of nanosecond laser conditioning(NLC)into different manufacturing stages of MLDGs was proposed for the first time on multilayer dielectric films(MLDFs)and final grating products to improve laser-induced damage performance.The results suggest that the remaining nodular ejection pits introduced by the two protocols exhibit a high nanosecond laser damage resistance,which remains stable when the irradiated laser fluence is more than twice the nanosecond-laser-induced damage threshold(nanosecond-LIDT)of the unconditioned MLDGs.Furthermore,the picosecond-LIDT of the nodular ej ection pit conditioned on the MLDFs was approximately 40%higher than that of the nodular defects,and the loss of the grating structure surrounding the nodular defects was avoided.Therefore,NLC is an effective strategy for improving the laser damage resistance of MLDGs.
基金funded by the following grants:Chinese Academy of Sciences president’s International Fellowship Initiative(Grant No.2018PE0033)National Natural Science Foundation of China(Grant No.51802327)+1 种基金Science and Technology Commission of Shanghai Municipality(No.18511110500)Pre-research Fund Key Project(No.6140922010601)
文摘The rapid development of bulk β-Ga_2O_3 crystals has attracted much attention to their use as ultra-wide bandgap materials for next-generation power devices owing to its large bandgap(~ 4.9 eV) and large breakdown electric field of about8 MV/cm. Low cost and high quality of large β-Ga_2O_3 single-crystal substrates can be attained by melting growth techniques widely used in the industry. In this paper, we first present an overview of the properties of β-Ga_2O_3 crystals in bulk form. We then describe the various methods for producing bulk β-Ga_2O_3 crystals and their applications. Finally, we will present a future perspective of the research in the area in the area of single crystal growth.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant Nos.61475171,61705244,61307056,and 61875052)the Natural Science Foundation of Shanghai,China(Grant Nos.17ZR1433900 and17ZR1434200)
文摘An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.
基金Supported by the National Natural Science Foundation of China under Grant No 10676019.
文摘A thermal model is considered in order to better understand the mechanism of laser induced damage in KDP and DKDP crystals. We demonstrate that the expressions of pinpoint density and damage probability, predicted by the thermal model, are consistent with the experimental data. We also discuss the effect of particle interaction on the thermal model.
基金Supported by the National Natural Science Foundation of China under Grant No 10676019
文摘By testing the number increase and size growth of surface and bulk laser induced damage in KDP and DKDP crystals, we observe different growth characteristics of surface and bulk damage under multiple 355nm laser irradiations. The size of the surface damage grows exponentially, but that of the bulk damage does not grow. In contrast, the bulk damage number increases, but that of surface damage does not increase significantly. We attribute the differences to the different formation of the damage initiators and the different damage testing volumes.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405085)the Jiangsu Provincial Natural Science Fund,China(Grant No.BK20130789)
文摘Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO_2/SiO_2 multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold(LIDT),which includes defects, surface roughness, packing density and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm^2 to 12 J/cm^2, i.e., 50% increase, after the film has been irradiated by 2.2×10^(13)/cm^2 β-ray, the particle irradiation can be used as a controllable and desirable postprocessing method to improve the resistance to laser induced damage.
基金Project supported by the National Natural Science Foundation of China(Grant No.51802327)the Science and Technology Commission of Shanghai Municipality,China(Grant No.18511110500)
文摘Ta5+doped β-Ga2O3 single crystals were grown by using the optical floating zone method, and then annealed in the air and nitrogen gas at 1400℃ for 20 hours.The transmittance spectra, photoluminescence(PL), x-ray irradiation spectra, and PL decay profiles of the samples were measured at room temperature.The relevant results show that the optical transmittance of the samples annealed in the air or nitrogen gas was improved.By drawing the(ahv)2–hv graph,it can be seen that the band gap decreased after being annealed in the air, but increased in nitrogen gas.The PL spectra and x-ray irradiation spectra show that the luminescent intensity of the sample annealed in the air increased substantially,while decreased for the sample annealed in nitrogen.The PL decay time of the Ta:β-Ga2O3 annealed in the air increased significantly compared with that of the Ta:β-Ga2O3 sample without annealing, but the tendency after annealing in nitrogen gas was opposite.