Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is ...Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is found that alpha particle losses decrease and loss regions become narrower with the plasma current increasing or with the magnetic field decreasing. It is because the ripple stochastic transport and the ripple well loss of alpha particle are reduced with the safety factor decreasing. Decrease of the plasma density and temperature can reduce alpha particle losses due to enhancement of the slowing-down effect. The direction of the toroidal magnetic field can significantly affect heat loads induced by lost alpha particle. The vertical asymmetry of heat loads induced by the clockwise and counter-clockwise toroidal magnetic fields are due to the fact that the ripple distribution is asymmetric about the mid-plane, which can be explained by the typical orbits of alpha particle. The maximal heat load of alpha particle for the clockwise toroidal magnetic field is much smaller than that for the counter-clockwise one.展开更多
Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellula...Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellular matrix substance (EPS). Microcolonies within biofilm are held together by interactions and bonding of the substances present in the EPS with their separation from the water channels. Similar to insoluble EPS, bacterial microcolonies release soluble exofactors that have direct impacts on the survivability, growth and antibacterial resistivity of other microcolonies made of single- or multi-species bacteria in the same biofilm. How the exofactors of microcolonies of one-type bacteria impact on microcolonies of other-type bacteria is still unclear. We studied about the role of exofactors released from Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are common biofilm-forming pathogenic bacteria. Exofactors facilitate to transform the microenvironment where bacteria can acquire alternative lifestyle with a long survival period and resistivity to certain antimicrobial drugs.展开更多
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re...The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.展开更多
Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fis...Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.展开更多
Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurren...Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurrences of heatwaves between the grid cells in East Asia and Eastern Europe,even though they are geographically far away from each other.By further composite analysis,this study revealed that hot events first occurred in Eastern Europe,typically with a time lag of3-4 days before the East Asian heatwave events.An eastward propagating atmospheric wave train,known as the circumglobal teleconnection(CGT)pattern,bridged the sequent occurrences of extreme events in these two remote regions.Atmospheric blockings,amplified by surface warming over Eastern Europe,not only enhanced local heat extremes but also excited a CGT-like pattern characterized by alternative anomalies of high and low pressures.Subsequent downstream anticyclones in the middle and upper troposphere reduced local cloud cover and increased downward solar radiation,thereby facilitating the formation of heatwaves over East Asia.Nearly half of East Asian heatwave events were preceded by Eastern European heatwave events in the 10-day time range before East Asian heatwave events.This investigation of heatwave teleconnection in the two distant regions exhibits strong potential to improve the prediction accuracy of East Asian heatwaves.展开更多
Objective:To assess the epidemiology of urinary schistosomiasis and soil-transmitted helminthiasis among women of reproductive age in Mwaluphamba,Kwale County,Kenya.Methods:A community-based cross-sectional study desi...Objective:To assess the epidemiology of urinary schistosomiasis and soil-transmitted helminthiasis among women of reproductive age in Mwaluphamba,Kwale County,Kenya.Methods:A community-based cross-sectional study design was employed to randomly sample 422 women of reproductive age(15-<50 years)from four villages in Mwaluphamba location.Stool specimens were collected and examined using the Kato-Katz method,while filtration technique was used to analyze urine specimens.Participants’sociodemographic details were obtained using a standardized questionnaire.Results:Urinary schistosomiasis prevalence was at 4.7%(20/422,95%CI 2.8%-6.9%)while the prevalence of soil-transmitted helminthiasis infection was 4.5%(19/422,95%CI 2.6%-6.7%).The infection intensities of urinary schistosomiasis among the study participants ranged from 1 to 120 eggs/10 mL of urine with median egg count of 18.45 eggs/10 mL.The patients were diagnosed with light infection,of 56.16 egg/gram and 48.48 egg/gram for Trichuris trichiura and hookworms,respectively.Women without latrines had 15.7 times higher risk of having urinary schistosomiasis compared to those with a latrine.Similarly,use of surface water(aOR=1.0,95%CI 0.2-1.4,P=0.010)and crossing the river to go to a place(aOR=1.1,95%CI 0.3-1.6,P=0.009)were statistically significant risk factors for getting urinary schistosomiasis.In bivariable regression analysis,defecating around the water source(OR=4.3,95%CI 1.5-12.9)had a statistically significant association with the prevalence of soil-transmitted helminthiasis(P=0.008).Conclusions:This study has given an insight on the prevalence and intensity of urinary schistosomiasis and soil-transmitted helminthiasis in Mwaluphamba location that form a basis for strengthening the control and elimination programmes for these neglected tropical diseases.展开更多
Background:Atherosclerosis forms the pathological basis for the development of cardiovascular disease.Since pathological processes initially develop without clinically relevant symptoms,the identification of early mar...Background:Atherosclerosis forms the pathological basis for the development of cardiovascular disease.Since pathological processes initially develop without clinically relevant symptoms,the identification of early markers in the subclinical stage plays an important role for initiating early interventions.There is evidence that regulatory T cells(Tregs)are involved in the development of atherosclerosis.Therefore,the present study aimed to identify and investigate associations with Tregs and their subsets in a cohort of healthy elderly individuals with and without subclinical atherosclerotic plaques(SAP).In addition,various lifestyle and risk factors,such as cardiorespiratory fitness,were investigated as associated signatures.Methods:A cross-sectional study was performed in 79 participants(male:n=50;age=63.6±3.7 years;body mass index=24.9±3.1 kg/m2;mean±SD)who had no previous diagnosis of chronic disease and were not taking medication.Ultrasound of the carotids to identify SAP,cardiovascular function measurement for vascular assessment and a cardiorespiratory fitness test to determine peak oxygen uptake were performed.Additionally,tests were conducted to assess blood lipids and determine glucose levels.Immunophenotyping of Tregs and their subtypes(resting(rTregs)and effector/memory(mTregs))was performed by 8-chanel flow cytometry.Participants were categorized according to atherosclerotic plaque status.Linear and logistic regression models were used to analyze associations between parameters.Results:SAP was detected in a total of 29 participants.The participants with plaque were older(64.8±3.6 years vs.62.9±3.5 years)and had higher peripheral systolic blood pressure(133.8±14.7 mmHg vs.125.8±10.9 mmHg).The participants with SAP were characterized by a lower percentage of rTregs(28.8%±10.7%vs.34.6%±10.7%)and a higher percentage of mTregs(40.3%±14.7%vs.30.0%±11.9%).Multiple logistic regression identified age(odds ratio(OR)=1.20(95%confidence interval(95%CI):1.011.42))and mTregs(OR=1.05(95%CI:1.021.10))as independent risk factors for SAP.Stepwise linear regression could reveal an association of peak oxygen uptake(β=0.441),low-density lipoprotein(LDL)(β=0.096),and SAP(β=6.733)with mTregs and LDL(β=0.104)with rTregs.Conclusion:While at an early stage of SAP,the total proportion of Tregs gives no indication of vascular changes,this is indicated by a shift in the Treg subgroups.Factors such as serum LDL or cardiopulmonary fitness may be associated with this shift and may also be additional diagnostic indicators.This could be used to initiate lifestyle-based preventive measures at an early stage,which may have a protective effect against disease progression.展开更多
The chemical formula for rare earth-ferro nitrides is RxFeyNz,where R represents a rare earth element.Anisotropic rare earth-ferro nitrides include two types of materials with different chemical compositions and cryst...The chemical formula for rare earth-ferro nitrides is RxFeyNz,where R represents a rare earth element.Anisotropic rare earth-ferro nitrides include two types of materials with different chemical compositions and crystal structures:(1) Nd(Fe,M)12Nx or Pr(Fe,M)12Nx,where M=Ti,V,Mo,etc.,having a ThMn12-type tetragonal crystal structure,commonly referred to as Neodymium-FerroNitrogen (NdFeN);(2) Sm2Fe17Nx, having a Th2Zn17-type rhombohedral crystal structure,abbreviated as Samarium-Ferro-Nitrogen (SmFeN).The academic community refers to these two types of materials collectively as rare earth-ferro nitrides.展开更多
In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However...In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.展开更多
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12175034 and 12005063)the National Key Research and Development Program of China (Grant No.2019YFE03030001)the Fundamental Research Funds for the Central Universities (Grant No.2232022G-10)。
文摘Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is found that alpha particle losses decrease and loss regions become narrower with the plasma current increasing or with the magnetic field decreasing. It is because the ripple stochastic transport and the ripple well loss of alpha particle are reduced with the safety factor decreasing. Decrease of the plasma density and temperature can reduce alpha particle losses due to enhancement of the slowing-down effect. The direction of the toroidal magnetic field can significantly affect heat loads induced by lost alpha particle. The vertical asymmetry of heat loads induced by the clockwise and counter-clockwise toroidal magnetic fields are due to the fact that the ripple distribution is asymmetric about the mid-plane, which can be explained by the typical orbits of alpha particle. The maximal heat load of alpha particle for the clockwise toroidal magnetic field is much smaller than that for the counter-clockwise one.
文摘Some bacteria have the ability to co-exist, proliferate and survive in a multicellular community, biofilm. Each participating bacteria can form its colonies and encases itself by a self-produced insoluble extracellular matrix substance (EPS). Microcolonies within biofilm are held together by interactions and bonding of the substances present in the EPS with their separation from the water channels. Similar to insoluble EPS, bacterial microcolonies release soluble exofactors that have direct impacts on the survivability, growth and antibacterial resistivity of other microcolonies made of single- or multi-species bacteria in the same biofilm. How the exofactors of microcolonies of one-type bacteria impact on microcolonies of other-type bacteria is still unclear. We studied about the role of exofactors released from Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, which are common biofilm-forming pathogenic bacteria. Exofactors facilitate to transform the microenvironment where bacteria can acquire alternative lifestyle with a long survival period and resistivity to certain antimicrobial drugs.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12375215 and 12175034)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008).
文摘The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.
文摘Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)National Natural Science Foundation of China (42275020)+1 种基金Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021001)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (2020B1212060025)。
文摘Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurrences of heatwaves between the grid cells in East Asia and Eastern Europe,even though they are geographically far away from each other.By further composite analysis,this study revealed that hot events first occurred in Eastern Europe,typically with a time lag of3-4 days before the East Asian heatwave events.An eastward propagating atmospheric wave train,known as the circumglobal teleconnection(CGT)pattern,bridged the sequent occurrences of extreme events in these two remote regions.Atmospheric blockings,amplified by surface warming over Eastern Europe,not only enhanced local heat extremes but also excited a CGT-like pattern characterized by alternative anomalies of high and low pressures.Subsequent downstream anticyclones in the middle and upper troposphere reduced local cloud cover and increased downward solar radiation,thereby facilitating the formation of heatwaves over East Asia.Nearly half of East Asian heatwave events were preceded by Eastern European heatwave events in the 10-day time range before East Asian heatwave events.This investigation of heatwave teleconnection in the two distant regions exhibits strong potential to improve the prediction accuracy of East Asian heatwaves.
文摘Objective:To assess the epidemiology of urinary schistosomiasis and soil-transmitted helminthiasis among women of reproductive age in Mwaluphamba,Kwale County,Kenya.Methods:A community-based cross-sectional study design was employed to randomly sample 422 women of reproductive age(15-<50 years)from four villages in Mwaluphamba location.Stool specimens were collected and examined using the Kato-Katz method,while filtration technique was used to analyze urine specimens.Participants’sociodemographic details were obtained using a standardized questionnaire.Results:Urinary schistosomiasis prevalence was at 4.7%(20/422,95%CI 2.8%-6.9%)while the prevalence of soil-transmitted helminthiasis infection was 4.5%(19/422,95%CI 2.6%-6.7%).The infection intensities of urinary schistosomiasis among the study participants ranged from 1 to 120 eggs/10 mL of urine with median egg count of 18.45 eggs/10 mL.The patients were diagnosed with light infection,of 56.16 egg/gram and 48.48 egg/gram for Trichuris trichiura and hookworms,respectively.Women without latrines had 15.7 times higher risk of having urinary schistosomiasis compared to those with a latrine.Similarly,use of surface water(aOR=1.0,95%CI 0.2-1.4,P=0.010)and crossing the river to go to a place(aOR=1.1,95%CI 0.3-1.6,P=0.009)were statistically significant risk factors for getting urinary schistosomiasis.In bivariable regression analysis,defecating around the water source(OR=4.3,95%CI 1.5-12.9)had a statistically significant association with the prevalence of soil-transmitted helminthiasis(P=0.008).Conclusions:This study has given an insight on the prevalence and intensity of urinary schistosomiasis and soil-transmitted helminthiasis in Mwaluphamba location that form a basis for strengthening the control and elimination programmes for these neglected tropical diseases.
基金funded by the Central Hessen Research Campus,Flexi Fund,Project No.20121_1_1.
文摘Background:Atherosclerosis forms the pathological basis for the development of cardiovascular disease.Since pathological processes initially develop without clinically relevant symptoms,the identification of early markers in the subclinical stage plays an important role for initiating early interventions.There is evidence that regulatory T cells(Tregs)are involved in the development of atherosclerosis.Therefore,the present study aimed to identify and investigate associations with Tregs and their subsets in a cohort of healthy elderly individuals with and without subclinical atherosclerotic plaques(SAP).In addition,various lifestyle and risk factors,such as cardiorespiratory fitness,were investigated as associated signatures.Methods:A cross-sectional study was performed in 79 participants(male:n=50;age=63.6±3.7 years;body mass index=24.9±3.1 kg/m2;mean±SD)who had no previous diagnosis of chronic disease and were not taking medication.Ultrasound of the carotids to identify SAP,cardiovascular function measurement for vascular assessment and a cardiorespiratory fitness test to determine peak oxygen uptake were performed.Additionally,tests were conducted to assess blood lipids and determine glucose levels.Immunophenotyping of Tregs and their subtypes(resting(rTregs)and effector/memory(mTregs))was performed by 8-chanel flow cytometry.Participants were categorized according to atherosclerotic plaque status.Linear and logistic regression models were used to analyze associations between parameters.Results:SAP was detected in a total of 29 participants.The participants with plaque were older(64.8±3.6 years vs.62.9±3.5 years)and had higher peripheral systolic blood pressure(133.8±14.7 mmHg vs.125.8±10.9 mmHg).The participants with SAP were characterized by a lower percentage of rTregs(28.8%±10.7%vs.34.6%±10.7%)and a higher percentage of mTregs(40.3%±14.7%vs.30.0%±11.9%).Multiple logistic regression identified age(odds ratio(OR)=1.20(95%confidence interval(95%CI):1.011.42))and mTregs(OR=1.05(95%CI:1.021.10))as independent risk factors for SAP.Stepwise linear regression could reveal an association of peak oxygen uptake(β=0.441),low-density lipoprotein(LDL)(β=0.096),and SAP(β=6.733)with mTregs and LDL(β=0.104)with rTregs.Conclusion:While at an early stage of SAP,the total proportion of Tregs gives no indication of vascular changes,this is indicated by a shift in the Treg subgroups.Factors such as serum LDL or cardiopulmonary fitness may be associated with this shift and may also be additional diagnostic indicators.This could be used to initiate lifestyle-based preventive measures at an early stage,which may have a protective effect against disease progression.
文摘The chemical formula for rare earth-ferro nitrides is RxFeyNz,where R represents a rare earth element.Anisotropic rare earth-ferro nitrides include two types of materials with different chemical compositions and crystal structures:(1) Nd(Fe,M)12Nx or Pr(Fe,M)12Nx,where M=Ti,V,Mo,etc.,having a ThMn12-type tetragonal crystal structure,commonly referred to as Neodymium-FerroNitrogen (NdFeN);(2) Sm2Fe17Nx, having a Th2Zn17-type rhombohedral crystal structure,abbreviated as Samarium-Ferro-Nitrogen (SmFeN).The academic community refers to these two types of materials collectively as rare earth-ferro nitrides.
基金supported by the National Science Fund for Distinguished Young Scholars of China(52025056)Fundamental Research Funds for the Central Universities(xzy012022062)。
文摘In recent years,intelligent data-driven prognostic methods have been successfully developed,and good machinery health assessment performance has been achieved through explorations of data from multiple sensors.However,existing datafusion prognostic approaches generally rely on the data availability of all sensors,and are vulnerable to potential sensor malfunctions,which are likely to occur in real industries especially for machines in harsh operating environments.In this paper,a deep learning-based remaining useful life(RUL)prediction method is proposed to address the sensor malfunction problem.A global feature extraction scheme is adopted to fully exploit information of different sensors.Adversarial learning is further introduced to extract generalized sensor-invariant features.Through explorations of both global and shared features,promising and robust RUL prediction performance can be achieved by the proposed method in the testing scenarios with sensor malfunctions.The experimental results suggest the proposed approach is well suited for real industrial applications.