期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
The lymphatic system:a therapeutic target for central nervous system disorders 被引量:6
1
作者 Jia-Qi Xu Qian-Qi Liu +4 位作者 Sheng-Yuan Huang Chun-Yue Duan Hong-Bin Lu Yong Cao Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1249-1256,共8页
The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vesse... The lymphatic vasculature forms an organized network that covers the whole body and is involved in fluid homeostasis,metabolite clearance,and immune surveillance.The recent identification of functional lymphatic vessels in the meninges of the brain and the spinal cord has provided novel insights into neurophysiology.They emerge as major pathways for fluid exchange.The abundance of immune cells in lymphatic vessels and meninges also suggests that lymphatic vessels are actively involved in neuroimmunity.The lymphatic system,through its role in the clearance of neurotoxic proteins,autoimmune cell infiltration,and the transmission of pro-inflammatory signals,participates in the pathogenesis of a variety of neurological disorders,including neurodegenerative and neuroinflammatory diseases and traumatic injury.Vascular endothelial growth factor C is the master regulator of lymphangiogenesis,a process that is critical for the maintenance of central nervous system homeostasis.In this review,we summarize current knowledge and recent advances relating to the anatomical features and immunological functions of the lymphatic system of the central nervous system and highlight its potential as a therapeutic target for neurological disorders and central nervous system repair. 展开更多
关键词 central nervous system central nervous system injury glymphatic system lymphatic vessels MENINGES neurodegenerative disorders neuroinflammatory diseases vascular endothelial growth factor C
下载PDF
Glymphatic system:a gateway for neuroinflammation
2
作者 Kailu Zou Qingwei Deng +1 位作者 Hong Zhang Changsheng Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2661-2672,共12页
The glymphatic system is a relatively recently identified fluid exchange and transpo rt system in the brain.Accumulating evidence indicates thatglymphatic function is impaired not only in central nervous system disord... The glymphatic system is a relatively recently identified fluid exchange and transpo rt system in the brain.Accumulating evidence indicates thatglymphatic function is impaired not only in central nervous system disorders but also in systemic diseases.Systemic diseases can trigger the inflammatory responses in the central nervous system,occasionally leading to sustained inflammation and functional disturbance of the central nervous system.This review summarizes the current knowledge on the association between glymphatic dysfunction and central nervous system inflammation.In addition,we discuss the hypothesis that disease conditions initially associated with peripheral inflammation ove rwhelm the performance of the glymphatic system,thereby triggering central nervous system dysfun ction,chronic neuroinflammation,and neurodegeneration.Future research investigating the role of the glymphatic system in neuroinflammation may offer innovative therapeutic approaches for central nervous system disorders. 展开更多
关键词 AQUAPORIN-4 central nervous system disease cerebrospinal fluid chronic neuroinflammation glymphatic dysfunction NEURODEGENERATION peripheral nerve injury perivascular space systemic disease vicious cycle
下载PDF
Hemorrhagic transformation in patients with large-artery atherosclerotic stroke is associated with the gut microbiota and lipopolysaccharide
3
作者 Qin Huang Minping Wei +3 位作者 Xianjing Feng Yunfang Luo Yunhai Liu Jian Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1532-1540,共9页
Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an importa... Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke. 展开更多
关键词 gut microbiota hemorrhagic transformation INFLAMMATION LIPOPOLYSACCHARIDE STROKE
下载PDF
Pannexins in the musculoskeletal system:new targets for development and disease progression
4
作者 Yan Luo Shengyuan Zheng +2 位作者 Wenfeng Xiao Hang Zhang Yusheng Li 《Bone Research》 SCIE CAS CSCD 2024年第2期255-269,共15页
During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming prote... During cell differentiation,growth,and development,cells can respond to extracellular stimuli through communication channels.Pannexin(Panx)family and connexin(Cx)family are two important types of channel-forming proteins.Panx family contains three members(Panx1-3)and is expressed widely in bone,cartilage and muscle.Although there is no sequence homology between Panx family and Cx family,they exhibit similar configurations and functions.Similar to Cxs,the key roles of Panxs in the maintenance of physiological functions of the musculoskeletal system and disease progression were gradually revealed later.Here,we seek to elucidate the structure of Panxs and their roles in regulating processes such as osteogenesis,chondrogenesis,and muscle growth.We also focus on the comparison between Cx and Panx.As a new key target,Panxs expression imbalance and dysfunction in muscle and the therapeutic potentials of Panxs in joint diseases are also discussed. 展开更多
关键词 SKELETAL DISEASES SYSTEM
下载PDF
Kdm6a-CNN1 axis orchestrates epigenetic control of traumainduced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair
5
作者 Chengjun Li Tian Qin +10 位作者 Jinyun Zhao Yuxin Jin Yiming Qin Rundong He Tianding Wu Chunyue Duan Liyuan Jiang Feifei Yuan Hongbin Lu Yong Cao Jianzhong Hu 《Bone Research》 SCIE CAS CSCD 2024年第2期314-333,共20页
Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,... Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair. 展开更多
关键词 inflammation EPIGENETIC NEUROLOGICAL
下载PDF
Characterization of acute-on-chronic liver diseases: A multicenter prospective cohort study
6
作者 Yuan-Yao Zhang Sen Luo +38 位作者 Hai Li Shu-Ning Sun Xian-Bo Wang Xin Zheng Yan Huang Bei-Ling Li Yan-Hang Gao Zhi-Ping Qian Feng Liu Xiao-Bo Lu Jun-Ping Liu Hao-Tang Ren Yu-Bao Zheng Hua-Dong Yan Guo-Hong Deng Liang Qiao Yan Zhang Wen-Yi Gu Xiao-Mei Xiang Yi Zhou Yi-Xin Hou Qun Zhang Yan Xiong Cong-Cong Zou Jun Chen Ze-Bing Huang Xiu-Hua Jiang Ting-Ting Qi Yuan-Yuan Chen Na Gao Chun-Yan Liu Wei Yuan Xue Mei Jing Li Tao Li Rong-Jiong Zheng Xin-Yi Zhou Jun Zhao Zhong-Ji Meng 《World Journal of Hepatology》 2024年第5期809-821,共13页
BACKGROUND Acute-on-chronic liver disease(AoCLD)accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases.AIM To explore the characterization of AoCLD to provide theoret... BACKGROUND Acute-on-chronic liver disease(AoCLD)accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases.AIM To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD.METHODS Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure(ACLF)study cohort were included in this study.The clinical characteristics and outcomes,and the 90-d survival rate associated with each clinical type of AoCLD were analyzed,using the Kaplan-Meier method and the log-rank test.RESULTS A total of 3375 patients with AoCLD were enrolled,including 1679(49.7%)patients with liver cirrhosis acute decompensation(LC-AD),850(25.2%)patients with ACLF,577(17.1%)patients with chronic hepatitis acute exacer-bation(CHAE),and 269(8.0%)patients with liver cirrhosis active phase(LC-A).The most common cause of chronic liver disease(CLD)was HBV infection(71.4%).The most common precipitants of AoCLD was bacterial infection(22.8%).The 90-d mortality rates of each clinical subtype of AoCLD were 43.4%(232/535)for type-C ACLF,36.0%(36/100)for type-B ACLF,27.0%(58/215)for type-A ACLF,9.0%(151/1679)for LC-AD,3.0%(8/269)for LC-A,and 1.2%(7/577)for CHAE.CONCLUSION HBV infection is the main cause of CLD,and bacterial infection is the main precipitant of AoCLD.The most common clinical type of AoCLD is LC-AD.Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF. 展开更多
关键词 Acute-on-chronic liver disease Acute-on-chronic liver failure Liver cirrhosis Clinical features PROGNOSIS
下载PDF
Progress in osteoarthritis research by the National Natural Science Foundation of China 被引量:7
7
作者 Yusheng Li Wenqing Xie +1 位作者 Wenfeng Xiao Dou Dou 《Bone Research》 SCIE CAS CSCD 2022年第3期409-420,共12页
Osteoarthritis(OA) in China is gradually becoming an important scientific research area that has had a significant impact on research and development(R&D) activities in the OA field worldwide. This article summari... Osteoarthritis(OA) in China is gradually becoming an important scientific research area that has had a significant impact on research and development(R&D) activities in the OA field worldwide. This article summarizes the R&D progress related to OA in China in recent years. The National Natural Science Foundation of China(NSFC) is a national funding institution for basic research and plays a critical role in promoting and supporting Chinese scholars’ R&D activities. We collected and analyzed information on NSFC funding in the field of OA from 2010 to 2019, including the amount, the level and the program categories of the funded projects. The data fully demonstrate the important and positive role of the NSFC in supporting free exploration, cultivating research teams and young talent, and boosting OA R&D. In this article, we outline and discuss hot topics in focused areas, key advances in this field and the prospects for progress in OA research in China. 展开更多
关键词 NSFC SUPPORTING BECOMING
下载PDF
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway 被引量:2
8
作者 Jin-Yun Zhao Xiao-Long Sheng +7 位作者 Cheng-Jun Li Tian Qin Run-Dong He Guo-Yu Dai Yong Cao Hong-Bin Lu Chun-Yue Duan Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1553-1562,共10页
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a... Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury. 展开更多
关键词 adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway ANGIOGENESIS aged mice compound C METFORMIN spinal cord injury
下载PDF
Metformin accelerates bone fracture healing by promoting type H vessel formation through inhibition of YAP1/TAZ expression 被引量:2
9
作者 Zhe Ruan Hao Yin +26 位作者 Teng-Fei Wan Zhi-Rou Lin Shu-Shan Zhao Hai-Tao Long Cheng Long Zhao-Hui Li Yu-Qi Liu Hao Luo Liang Cheng Can Chen Min Zeng Zhang-Yuan Lin Rui-Bo Zhao Chun-Yuan Chen Zhen-Xing Wang Zheng-Zhao Liu Jia Cao Yi-Yi Wang Ling Jin Yi-Wei Liu Guo-Qiang Zhu Jing-Tao Zou Jiang-Shan Gong Yi Luo Yin Hu Yong Zhu Hui Xie 《Bone Research》 SCIE CAS CSCD 2023年第3期625-637,共13页
Due to increasing morbidity worldwide,fractures are becoming an emerging public health concern.This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures.Type H ... Due to increasing morbidity worldwide,fractures are becoming an emerging public health concern.This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures.Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis.Here,we show that metformin accelerated fracture healing in both osteoporotic and normal mice.Moreover,metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing.Mechanistically,metformin increased the expression of HIF-1α,an important positive regulator of type H vessel formation,by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells(HMECs).The results of HIF-1αor YAP1/TAZ interference in hypoxia-cultured HMECs using si RNA further suggested that the enhancement of HIF-1αand its target genes by metformin is primarily through YAP1/TAZ inhibition.Finally,overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair.In summary,our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition. 展开更多
关键词 YAP1 HEALING FRACTURE
下载PDF
Hetero Nucleus Growth Stabilizing Zinc Anode for High‑Biosecurity Zinc‑Ion Batteries 被引量:1
10
作者 Jingjing Li Zhexuan Liu +6 位作者 Shaohua Han Peng Zhou Bingan Lu Jianda Zhou Zhiyuan Zeng Zhizhao Chen Jiang Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期349-360,共12页
Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices,raising higher requirements on the battery biocompatibility,high safety,low cost,and ex... Biocompatible devices are widely employed in modernized lives and medical fields in the forms of wearable and implantable devices,raising higher requirements on the battery biocompatibility,high safety,low cost,and excellent electrochemical performance,which become the evaluation criteria toward developing feasible biocompatible batteries.Herein,through conducting the battery implantation tests and leakage scene simulations on New Zealand rabbits,zinc sulfate electrolyte is proved to exhibit higher biosecurity and turns out to be one of the ideal zinc salts for biocompatible zinc-ion batteries(ZIBs).Furthermore,in order to mitigate the notorious dendrite growth and hydrogen evolution in mildly acidic electrolyte as well as improve their operating stability,Sn hetero nucleus is introduced to stabilize the zinc anode,which not only facilitates the planar zinc deposition,but also contributes to higher hydrogen evolution overpotential.Finally,a long lifetime of 1500 h for the symmetrical cell,the specific capacity of 150 mAh g^(-1)under 0.5 A g^(-1)for the Zn-MnO_(2)battery and 212 mAh g^(-1)under 5 A g^(-1)for the Zn—NH4V4O10 battery are obtained.This work may provide unique perspectives on biocompatible ZIBs toward the biosecurity of their cell components. 展开更多
关键词 Aqueous zinc-ion batteries Biocompatible devices Operating stability Zinc anode Zinc salts electrolyte
下载PDF
Comprehensive bioinformatics analysis and experimental validation:An anoikis-related gene prognostic model for targeted drug development in head and neck squamous cell carcinoma
11
作者 LIN QIU ANQI TAO +3 位作者 XIAOQIAN SUN FEI LIU XIANPENG GE CUIYING LI 《Oncology Research》 SCIE 2023年第5期715-752,共38页
We analyzed RNA-sequencing(RNA-seq)and clinical data from head and neck squamous cell carcinoma(HNSCC)patients in The Cancer Genome Atlas(TCGA)Genomic Data Commons(GDC)portal to investigate the prognostic value of ano... We analyzed RNA-sequencing(RNA-seq)and clinical data from head and neck squamous cell carcinoma(HNSCC)patients in The Cancer Genome Atlas(TCGA)Genomic Data Commons(GDC)portal to investigate the prognostic value of anoikis-related genes(ARGs)in HNSCC and develop new targeted drugs.Differentially expressed ARGs were screened using bioinformatics methods;subsequently,a prognostic model including three ARGs(CDKN2A,BIRC5,and PLAU)was constructed.Our results showed that the model-based risk score was a good prognostic indicator,and the potential of the three ARGs in HNSCC prognosis was validated by the TISCH database,the model’s accuracy was validated in two independent cohorts of the Gene Expression Omnibus database.Immune correlation analysis and half-maximal inhibitory concentration were also performed to reveal the different landscapes of TIME between risk groups and to predict immuno-and chemo-therapeutic responses.Potential small-molecule drugs for HNSCC were subsequently predicted using the L1000FWD database.Finally,in vitro experiments were used to verify the database findings.The relative ARG mRNA expression levels in HNSCC and surrounding normal tissues remained consistent with the model results.BIRC5 knockdown inhibited anoikis resistance in WSU-HN6 and CAL-27 cells.Molecular docking,real-time PCR,cell counting kit-8(CCK-8),plate clone,and flow cytometry analyses showed that small-molecule drugs predicted by the database may target the ARGs in the prognostic model,inhibit HNSCC cells survival rate,and promote anoikis in vitro.Therefore,we constructed a new ARG model for HNSCC patients that can predict prognosis and immune activity and identify a potential small-molecule drug for HNSCC,paving the way for clinically targeting anoikis in HNSCC. 展开更多
关键词 Head and neck squamous cell carcinoma ANOIKIS PROGNOSIS PROLIFERATION APOPTOSIS
下载PDF
Perspectives on a collaborative Canada-China research program on diagnostic biomarkers for pre-dementia stages of Alzheimer’s disease
12
作者 Serge Gauthier Jianping Jia +8 位作者 Sylvie Belleville Simon Cloutier Dessa Sadovnick Colleen Guimond Laura Robb Mario Masellis Guy A Rouleau Liyong Wu Pedro Rosa-Neto 《Journal of Translational Neuroscience》 2017年第3期1-6,共6页
下载PDF
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
13
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish
14
作者 Meihui He Mingfang Xia +3 位作者 Qian Yang Xingyi Chen Haibo Li Xiaobo Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1849-1856,共8页
The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabol... The retina of zebrafish can regenerate completely after injury.M ultiple studies have demonstrated that metabolic alte rations occur during retinal damage;however to date no study has identified a link between metabolites and retinal regeneration of zebrafish.Here,we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration.Among the differentially-ex pressed metabolites,we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.Then,we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish.Impo rtantly,p-aminobenzoic acid activated Achaetescute complex-like 1a expression,thereby promoting Müller glia reprogramming and division,as well as Müller glia-derived progenitor cell proliferation.Finally,we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution.Taken together,these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-Daspartic acid-damaged retinas of zebrafish. 展开更多
关键词 Achaetescute complex-like 1a(Ascl1a) metabolomics Müller glia p-aminobenzoic acid(PABA) RETINA REGENERATION ZEBRAFISH
下载PDF
Enhancing m^(6)A modification in the motor cortex facilitates corticospinal tract remodeling after spinal cord injury
15
作者 Tian Qin Yuxin Jin +5 位作者 Yiming Qin Feifei Yuan Hongbin Lu Jianzhong Hu Yong Cao Chengjun Li 《Neural Regeneration Research》 SCIE CAS 2025年第6期1749-1763,共15页
Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-met... Spinal cord injury typically causes corticospinal tract disruption. Although the disrupted corticospinal tract can self-regenerate to a certain degree, the underlying mechanism of this process is still unclear. N6-methyladenosine(m^(6)A) modifications are the most common form of epigenetic regulation at the RNA level and play an essential role in biological processes. However, whether m^(6)A modifications participate in corticospinal tract regeneration after spinal cord injury remains unknown. We found that expression of methyltransferase 14 protein(METTL14) in the locomotor cortex was high after spinal cord injury and accompanied by elevated m^(6)A levels. Knockdown of Mettl14 in the locomotor cortex was not favorable for corticospinal tract regeneration and neurological recovery after spinal cord injury. Through bioinformatics analysis and methylated RNA immunoprecipitation-quantitative polymerase chain reaction, we found that METTL14 regulated Trib2 expression in an m^(6)A-regulated manner, thereby activating the mitogen-activated protein kinase pathway and promoting corticospinal tract regeneration. Finally, we administered syringin, a stabilizer of METTL14, using molecular docking. Results confirmed that syringin can promote corticospinal tract regeneration and facilitate neurological recovery by stabilizing METTL14. Findings from this study reveal that m^(6)A modification is involved in the regulation of corticospinal tract regeneration after spinal cord injury. 展开更多
关键词 corticospinal tract remodeling epigenetic regulations locomotor cortex m^(6)A modification methyltransferase 14 protein(METTL14) mitogen-activated protein kinase neural regeneration spinal cord injury SYRINGIN TRIB2
下载PDF
Does ergogenic effect of caffeine supplementation depend on CYP1A2 genotypes? A systematic review with meta-analysis
16
作者 Jieping Wang Luthfia Dewi +3 位作者 Yundong Peng Chien-Wen Hou Yanmin Song Giancarlo Condello 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第4期499-508,共10页
Background:The ergogenic effects of caffeine intake on exercise performance are well-established,even if differences exist among individuals in response to caffeine intake.The genetic variation of a specific gene,huma... Background:The ergogenic effects of caffeine intake on exercise performance are well-established,even if differences exist among individuals in response to caffeine intake.The genetic variation of a specific gene,human cytochrome P450 enzyme 1A2(CYP1A2)(rs762551),may be one reason for this difference.This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on athletes’exercise performance after caffeine intake.Methods:A literature search through 4 databases(Web of Science,PubMed,Scopus,and China National Knowledge Infrastructure)was conducted until March 2023.The effect size was expressed as the weighted mean difference(WMD)by calculating fixed effects meta-analysis if heterogeneity was not significant(I^(2)≤50%and p≥0.1).Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2.Results:The final number of studies meeting the inclusion criteria was 12(n=666 participants).The overall analysis showed that the cycling time trial significantly improved after caffeine intake(WMD=-0.48,95%confidence interval(95%CI):-0.83 to-0.13,p=0.007).In subgroup analyses,acute caffeine intake improved cycling time trial only in individuals with the A allele(WMD=-0.90,95%CI:-1.48 to-0.33,p=0.002),but not the C allele(WMD=-0.08,95%CI:-0.32 to 0.17,p=0.53).Caffeine supplementation did not influence the Wingate(WMD=8.07,95%CI:-22.04 to 38.18,p=0.60)or countermovement jump test(CMJ)performance(WMD=1.17,95%CI:-0.02 to 2.36,p=0.05),and these outcomes were not influenced by CYP1A2 genotype.Conclusion:Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation.However,compared to placebo,acute caffeine supplementation failed to increase the Wingate or CMJ performance,regardless of CYP1A2 genotype. 展开更多
关键词 Countermovement jump test Endurance Ergogenic aid Gene polymorphism WINGATE
下载PDF
ALKBH5 suppresses autophagic flux via N6-methyladenosine demethylation of ZKSCAN3 mRNA in acute pancreatitis
17
作者 Tao Zhang Shuai Zhu Geng-Wen Huang 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1764-1776,共13页
BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancre... BACKGROUND Increasing evidence has demonstrated that N6-methyladenosine(m6A)RNA modification plays an essential role in a wide range of pathological conditions.Impaired autophagy is a critical hallmark of acute pancreatitis(AP).AIM To explore the role of the m6A modification of ZKSCAN3 in the regulation of autophagy in AP.METHODS The AP mouse cell model was established by cerulein-treated mouse pancreatic acinar cells(MPC-83),and the results were confirmed by the levels of amylase and inflammatory factors.Autophagy activity was evaluated by specific identification of the autophagy-related microstructure and the expression of autophagy-related genes.ZKSCAN3 and ALKBH5 were knocked down to study the function in AP.A m6A RNA binding protein immunoprecipitation assay was used to study how the m6A modification of ZKSCAN3 mRNA is regulated by ALKBH.RESULTS The increased expression of amylase and inflammatory factors in the supernatant and the accumulation of autophagic vacuoles verified that the AP mouse cell model was established.The downregulation of LAMP2 and upregulation of LC3-II/I and SQSTM1 demonstrated that autophagy was impaired in AP.The expression of ZKSCAN3 was upregulated in AP.Inhibition of ZKSCAN3 increased the expression of LAMP2 and decreased the expression of the inflammatory factors,LC3-II/I and SQSTM1.Furthermore,ALKBH5 was upregulated in AP.Knockdown of ALKBH5 downregulated ZKSCAN3 expression and restored decreased autophagic flux in AP.Notably,the bioinformatic analysis revealed 23 potential m6A modification sites on ZKSCAN3 mRNA.The m6A modification of ZKSCAN3 mRNA was significantly decreased in AP.Knockdown of ALKBH5 increased the modification of ZKSCAN3 mRNA,which confirmed that ALKBH5 upregulated ZKSCAN3 expression in a m6A-dependent manner.CONCLUSION ALKBH5 inhibits autophagic flux through m6A demethylation of ZKSCAN3 mRNA in AP,thereby aggravating the severity of the disease. 展开更多
关键词 Acute pancreatitis AUTOPHAGY ZKSCAN3 N6-methyladenosine ALKBH5
下载PDF
CRABP2 regulates infiltration of cancer-associated fibroblasts and immune response in melanoma
18
作者 SHUANGSHUANG ZENG XI CHEN +4 位作者 QIAOLI YI ABHIMANYU THAKUR HUI YANG YUANLIANG YAN SHAO LIU 《Oncology Research》 SCIE 2024年第2期261-272,共12页
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is ... Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy. 展开更多
关键词 CRABP2 MELANOMA PD-1 Cancer-associated fibroblasts Immune infiltration
下载PDF
PCDH17 restricts dendritic spine morphogenesis by regulating ROCK2-dependent control of the actin cytoskeleton,modulating emotional behavior
19
作者 Laidong Yu Fangfang Zeng +14 位作者 Mengshu Fan Kexuan Zhang Jingjing Duan Yalu Tan Panlin Liao Jin Wen Chenyu Wang Meilin Wang Jialong Yuan Xinxin Pang Yan Huang Yangzhou Zhang Jia-Da Li Zhuohua Zhang Zhonghua Hu 《Zoological Research》 SCIE CSCD 2024年第3期535-550,共16页
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts... Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders. 展开更多
关键词 Synapse development Dendritic spine Mood disorder Actin cytoskeleton Animal behavior
下载PDF
m^(6)A modification of lncRNA in middle ear cholesteatoma
20
作者 HE Jun XIE Shumin +3 位作者 JIN Li FU Jinfeng YUAN Qiulin LIU Wei 《中南大学学报(医学版)》 CAS CSCD 北大核心 2024年第5期667-678,共12页
Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remai... Objective:Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss,bone destruction,and other severe complications.Despite surgery being the primary treatment,the recurrence rate remains high.Therefore,exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches.This study aims to explore the involvement of N6-methyladenosine(m^(6)A)methylation in long non-coding RNAs(lncRNAs)in the biological functions and related pathways of middle ear cholesteatoma.Methods:The m^(6)A modification patterns of lncRNA in middle ear cholesteatoma tissues(n=5)and normal post-auricular skin tissues(n=5)were analyzed using an lncRNA m^(6)A transcriptome microarray.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma.Methylated RNA immunoprecipitation(MeRIP)-PCR was used to validate the m^(6)A modifications in cholesteatoma and normal skin tissues.Results:Compared with normal skin tissues,1525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues,with 1048 showing hypermethylation and 477 showing hypomethylation[fold change(FC)≥3 or<1/3,P<0.05].GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity,neuron-neuron synapse,and regulation ofα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)receptor activity.Hypomethylated lncRNAs were associated with mRNA methyltransferase activity,secretory granule membrane,and mRNA methylation.KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways:the Hedgehog signaling pathway,viral protein interaction with cytokines and cytokine receptors,mitogen-activated protein kinase(MAPK)signaling pathway,cytokine-cytokine receptor interaction,and adrenergic signaling in cardiomyocytes.Hypomethylated lncRNAs were mainly involved in 4 pathways:Renal cell carcinoma,tumor necrosis factor signaling pathway,transcriptional misregulation in cancer,and cytokine-cytokine receptor interaction.Additionally,MeRIP-PCR confirmed the changes in m^(6)A methylation levels in NR_033339,NR_122111,NR_130744,and NR_026800,consistent with microarray analysis.Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB,key genes in the MAPK signaling pathway.Conclusion:This study reveals the m^(6)A modification patterns of lncRNAs in middle ear cholesteatoma,suggests a direction for further research into the role of lncRNA m^(6)A modification in the etiology of cholesteatoma.The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma. 展开更多
关键词 long non-coding RNA m6A modifications middle ear cholesteatoma
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部