The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve signifi...The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve significantly higher densities of integration in integrated photonics circuits that is possible today is discussed. Relevant figures of merit are formulated to this end and used to achieve good performance of devices with today's materials and to define required improvements in materials characteristics in terms of decreased scattering rates in the Drude model. The general conclusion is that some metal based circuits are feasible with today's matals. Frequency selective metal devices will have Q values on the order of only 10-100, and significant improvements of scattering rates or lowering of the imaginary part of e have to be achieved to implement narrowband devices. A photonic "Moore's law" of integration densities is proposed and exemplified.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced n...Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties,making it a promising material platform for various spintronic and optoelectronic device applications.In recent years,nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials,indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials.In this work,we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method.It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients,which is distinct from the nonJanus structures.Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field.Thus,the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities i...We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.展开更多
Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are ch...Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3...The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3+ ions increased obviously after heat-treatment due to co-doping with CdF2. The structure model of nanocrystals PbxCdl-xF2 was determined and the effect of CdF2 in oxyfluoride glass ceramics was explained by the analysis of x-ray diffraction data. Different nucleation temperatures of samples with different compositions were obtained by differential thermal analysis curves and the results showed the growth process of different nanocrystals in glass ceramics.展开更多
Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteri...Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the in...A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.展开更多
The luminescent properties of Er^(3+) ions in LiNbO_(3):Er and LiNbO_(3):Mg, Er crystals at room temperature have been investigated by the emission spectra and the selective excitation spectra. The energy transition p...The luminescent properties of Er^(3+) ions in LiNbO_(3):Er and LiNbO_(3):Mg, Er crystals at room temperature have been investigated by the emission spectra and the selective excitation spectra. The energy transition processes of Er3+ luminescence have been analysed. It has been found that the luminescent intensity of Er^(3+) ions in the LiNbO_(3):Mg, Er crystal increased up to 7.8 times compared with that in the LiNbO_(3):Er crystal. The decrease of the defect centre (NbLi) concentration due to doping with Mg^(2+) ions plays a key role in this phenomenon.展开更多
The domain reversal characteristics of near-stoichiometric LiNbO3 ([Li]/[Li+Nb]=0.496) single crystals, which are grown by the Czochralski method with K2O tlux, are investigated. The switch tield for 180° ferroel...The domain reversal characteristics of near-stoichiometric LiNbO3 ([Li]/[Li+Nb]=0.496) single crystals, which are grown by the Czochralski method with K2O tlux, are investigated. The switch tield for 180° ferroelectric domain reversal in the near-stoichiometric LiNbO3 crystal is 8.0±0.5kV/mm, which is only one third of the switching field required for the congruent LiNbO3 crystals. We have successfully achieved 180° domain reversal in near-stoichiometric LiNbO3 samples of 1.0mm thickness.展开更多
We report AlGaN-based back-illuminated solar-blind Schottky-type ultraviolet photodetectors with the cutoff- wavelength from 280nm to 292nm without bias. The devices show low dark current of 2.1× 10^-6A/cm^2 at t...We report AlGaN-based back-illuminated solar-blind Schottky-type ultraviolet photodetectors with the cutoff- wavelength from 280nm to 292nm without bias. The devices show low dark current of 2.1× 10^-6A/cm^2 at the reverse bias of 5 V. The specific detectivity D* is estimated to be 3.3 × 10^12cmHz^1/2 W^-1 . To guarantee the performance of the photodetectors, the optimization of AlGaN growth and annealing condition for Schottky contacts were performed. The results show that high-temperature annealing method for Ni/Pt Schottky contacts is effective for the reduction of leakage current.展开更多
Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy ...Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.展开更多
In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder top...In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.展开更多
We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching e...We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.展开更多
We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ...We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ions is 3.55, probably due to the small amount of lithium oxides on the surface. UPS and RPES data imply that Mn ions are in a high spin state, and RPES results show strong Mn3d-O2p hybridization in the LiMn2O4 valence band.展开更多
We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 )...We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 ). Without chemical procedure, the MoS2 is mechanically exfoliated by using a clear scotch tape. A few layers of MoS2 flakes are obtained on the tape. Then, a piece of 1× 1 mm tape containing MoS2 thin flakes is inserted between two fiber ferrules and is integrated in the ring cavity. Stable mode-locking operation is attained at 1090nm with a repetition rate of l3.2 MHz. Our mode-locked laser has a maximum output power of 2OmW with 1.48nJ pulse energy. These results validate that the MoS2 has a broad operating wavelength which covers the 1-micron region, and it is also able to work in a high-power cavity.展开更多
基金Project supported by the Swedish Foundation for Strategic Research
文摘The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve significantly higher densities of integration in integrated photonics circuits that is possible today is discussed. Relevant figures of merit are formulated to this end and used to achieve good performance of devices with today's materials and to define required improvements in materials characteristics in terms of decreased scattering rates in the Drude model. The general conclusion is that some metal based circuits are feasible with today's matals. Frequency selective metal devices will have Q values on the order of only 10-100, and significant improvements of scattering rates or lowering of the imaginary part of e have to be achieved to implement narrowband devices. A photonic "Moore's law" of integration densities is proposed and exemplified.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金supported by the Natural Science Foundation of Fujian Province of China(Grant No.2020J01008)the National Natural Science Foundation of China(Grant No.12174382)。
文摘Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties,making it a promising material platform for various spintronic and optoelectronic device applications.In recent years,nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials,indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials.In this work,we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method.It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients,which is distinct from the nonJanus structures.Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field.Thus,the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774001, 60736033, 60776041 and 60876041, and National Basic Research Program of China under Grant Nos 2006CB604908 and 2006CB921607, and the National Key Basic R&D Plan of China under Grant Nos TG2007CB307004.
文摘We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176092,61036003,and 60837001)the National Basic Research Program of China (Grant No. 2012CB933503)+1 种基金the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110121110025)the Fundamental Research Funds for the Central Universities,China (Grant No. 2010121056)
文摘Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
文摘The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3+ ions increased obviously after heat-treatment due to co-doping with CdF2. The structure model of nanocrystals PbxCdl-xF2 was determined and the effect of CdF2 in oxyfluoride glass ceramics was explained by the analysis of x-ray diffraction data. Different nucleation temperatures of samples with different compositions were obtained by differential thermal analysis curves and the results showed the growth process of different nanocrystals in glass ceramics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176092 and 61474094)the National Basic Research Program of China(Grant Nos.2012CB933503 and 2012CB632103)the National Natural Science Foundation of China–National Research Foundation of Korea Joint Research Project(Grant No.11311140251)
文摘Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
文摘A stable Q-switched erbium doped fiber laser emitting at 1558 nm is demonstrated using a cadmium selenide(CdSe) material coated onto a side-polished D-shape fiber as the saturable absorber(SA). By elevating the input pump power from the threshold of 91 mW to the maximum available power of 136 mW, a pulse train with a maximum repetition rate of 57.44 kHz, minimum pulse width of 3.76 us, maximum average output power of7.99 mW, maximum pulse energy of 0.1391 uJ, and maximum peak power of 36.99 mW are obtained. The signalto-noise ratio of the spectrum is measured to be around 75 dB. This CdSe based SA is simple, robust, and reliable,and thus suitable for making a portable pulse laser source.
基金Supported by the National Advanced Material Commit tee of China under Grant No.863-715-001-0102by the fund for the excellent young researchers from the National Natural Science Foundation of China+1 种基金the National Education Ministry of China under Grants Nos.69825108 and 19734004“973”project China under Grant No.G1999033003.
文摘The luminescent properties of Er^(3+) ions in LiNbO_(3):Er and LiNbO_(3):Mg, Er crystals at room temperature have been investigated by the emission spectra and the selective excitation spectra. The energy transition processes of Er3+ luminescence have been analysed. It has been found that the luminescent intensity of Er^(3+) ions in the LiNbO_(3):Mg, Er crystal increased up to 7.8 times compared with that in the LiNbO_(3):Er crystal. The decrease of the defect centre (NbLi) concentration due to doping with Mg^(2+) ions plays a key role in this phenomenon.
基金Supported by the National Advanced Material Committee(grant 863-715-001-0102)and special funding for the excellent young researchers from the National Natural Science Foundation of China under Grant No.69825108and National Education Ministry of China,“973”Project(grant 1999033004).
文摘The domain reversal characteristics of near-stoichiometric LiNbO3 ([Li]/[Li+Nb]=0.496) single crystals, which are grown by the Czochralski method with K2O tlux, are investigated. The switch tield for 180° ferroelectric domain reversal in the near-stoichiometric LiNbO3 crystal is 8.0±0.5kV/mm, which is only one third of the switching field required for the congruent LiNbO3 crystals. We have successfully achieved 180° domain reversal in near-stoichiometric LiNbO3 samples of 1.0mm thickness.
基金Supported by the National Science Foundation of China under Grant Nos 60476028, 60325413 and 60776066, the National Basic Research Programme of China under Grant No 2006CB604908, and the Cultivation Fund of the Key Scientific and Technical Innovation Project of the Ministry of Education of China under Grant No 705002.
文摘We report AlGaN-based back-illuminated solar-blind Schottky-type ultraviolet photodetectors with the cutoff- wavelength from 280nm to 292nm without bias. The devices show low dark current of 2.1× 10^-6A/cm^2 at the reverse bias of 5 V. The specific detectivity D* is estimated to be 3.3 × 10^12cmHz^1/2 W^-1 . To guarantee the performance of the photodetectors, the optimization of AlGaN growth and annealing condition for Schottky contacts were performed. The results show that high-temperature annealing method for Ni/Pt Schottky contacts is effective for the reduction of leakage current.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474094)the National Basic Research Program of China(Grant No.2013CB632103)
文摘Polycrystalline Ge1-xSnx(poly-Ge1-xSnx) alloy thin films with high Sn content(〉 10%) were fabricated by cosputtering amorphous GeSna-GeSn on Ge100 wafers and subsequently pulsed laser annealing with laser energy density in the range of 250 mJ/cm^2 to 550 mJ/cm^2. High quality poly-crystal Ge0.90 Sn0.10 and Ge0.82 Sn0.18 films with average grain sizes of 94 nm and 54 nm were obtained, respectively. Sn segregation at the grain boundaries makes Sn content in the poly-GeSn alloys slightly less than that in the corresponding primary a-GeSn. The crystalline grain size is reduced with the increase of the laser energy density or higher Sn content in the primary a-GeSn films due to the booming of nucleation numbers. The Raman peak shift of Ge-Ge mode in the poly crystalline GeSn can be attributed to Sn substitution, strain,and disorder. The dependence of Raman peak shift of the Ge-Ge mode caused by strain and disorder in GeSn films on full-width at half-maximum(FWHM) is well quantified by a linear relationship, which provides an effective method to evaluate the quality of poly-Ge1-xSnx by Raman spectra.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province (Grant No. QC2012C081)the Creative Qualified Scientists and Technicians Foundation of Harbin City (Grant No. RC2012QN001025)the National Natural Science Foundation of China (Grant No. 61107069 and 41174161)
文摘In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.
基金Supported by the Fund from University of Malaya under Grant No RU007/2015LRGS(2015)/NGOD/UM/KPTMOSTI under Grant No SF014-2014
文摘We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96kHz to 3.26kHz, whereas the pulse width reduces from 211 #s to 86#s. The highest pulse of 479nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5μs when the pump power is fixed at 145mW. The repetition rate of trailing dark pulses can be increased from 27.62kHz to 50kHz as the pump power increases from 55mW to 145mW.
文摘We study the electronic structures of LiMn2O4 by x-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and resonant photoelectron spectroscopy (RPES). XPS data suggest that the average oxidation state of Mn ions is 3.55, probably due to the small amount of lithium oxides on the surface. UPS and RPES data imply that Mn ions are in a high spin state, and RPES results show strong Mn3d-O2p hybridization in the LiMn2O4 valence band.
基金Supported by the PPP Grant Scheme of University of Malaya under Grant No PG098-2014B
文摘We demonstrate the generation of passive mode-locked double-clad ytterbium-doped fiber laser operating in a 1-micron region. We prepare the saturable absorber from commercial crystal of molybdenum disulphide (MoS2 ). Without chemical procedure, the MoS2 is mechanically exfoliated by using a clear scotch tape. A few layers of MoS2 flakes are obtained on the tape. Then, a piece of 1× 1 mm tape containing MoS2 thin flakes is inserted between two fiber ferrules and is integrated in the ring cavity. Stable mode-locking operation is attained at 1090nm with a repetition rate of l3.2 MHz. Our mode-locked laser has a maximum output power of 2OmW with 1.48nJ pulse energy. These results validate that the MoS2 has a broad operating wavelength which covers the 1-micron region, and it is also able to work in a high-power cavity.