The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ...The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.展开更多
Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal ...Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal radiation source for frequency comb and dual-comb operation.The systematic evaluation of phase noise characteristics of terahertz QCL frequency comb and dual-comb sources is of great importance for high precision measurements.In this work,we present detailed measurements and analysis of the phase noise characteristics of terahertz QCL frequency comb and dual-comb sources emitting around 4.2 THz with repetition frequencies of~6.2 GHz.The measurement results for the current noise of the direct current(DC)sources(that are used to electrically pump the terahertz QCLs)indicate that at 100 Hz,the current noise for DC-1 and DC-2 is 0.3895 and 0.0982 nA/Hz1/2,respectively.Such levels of current noise can be safely disregarded.The phase noise of radio frequency(RF)generators(that are employed for injection locking and phase locking),intermode beatnotes,and dual-comb signals with and without phase-locked loop(PLL)are all measured and compared.The experimental results show that in the free-running mode,the phase noise of the intermode beatnote signals is always lower than that of the dual-comb sig-nals across all frequencies.Additionally,the phase noise induced by the RF generators is negligible.By employing the phase lock-ing technique,the phase noise of the intermode beatnote and dual-comb signals in the low offset frequency band can be signifi-cantly suppressed.At an offset frequency of 100 Hz,the measured phase noise values of the dual-comb line without and with phase locking are 15.026 and-64.801 dBc/Hz,respectively.展开更多
Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec...Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.展开更多
The influence of strontium(Sr) and rare earth(RE) elements on the corrosion behavior of AZ91D magnesium alloy was investigated by conventional corrosion testing and electrochemical measurements in 3.5% NaCl solution.A...The influence of strontium(Sr) and rare earth(RE) elements on the corrosion behavior of AZ91D magnesium alloy was investigated by conventional corrosion testing and electrochemical measurements in 3.5% NaCl solution.After comparing the mass loss and hydrogen evolution of the samples,the microstructures of the alloys and the morphologies of their corrosion product films were characterized by electron probe microanalysis-energy dispersive spectrometry(EPMA-EDS) and Auger electron spectroscopy(AES).Compared with individual addition of Sr or RE to AZ91D,the combinative addition of 0.5% Sr and 1% RE to AZ91D successfully decreases the corrosion rate further,which can be attributed to the depression of micro-galvanic couples,as well as the formation of more protective film due to aluminum enrichment.The combinative addition of strontium and rare earth elements to AZ91D magnesium alloy appears to be a promising approach to increase its corrosion resistance.展开更多
Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and met...Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and methodological limitations related to exosome isolation and detection,advancements in their analysis remain slow.Microfluidic technology offers a better analytic approach compared with conventional methods.Here,we developed a bead-based microarray for exosome isolation and multiplexed tumor marker detection.Using this method,exosomes are isolated by binding to antibodies on the bead surface,and tumor markers on the exosomes are detected through quantum dot(QD)probes.The beads are then uniformly trapped and queued among micropillars in the chip.This design benefits fluorescence observation by dispersing the signals into every single bead,thereby avoiding optical interference and enabling more accurate test results.We analyzed exosomes in the cell culture supernatant of lung cancer and endothelial cell lines,and different lung cancer markers labeled with three QD probes were used to conduct multiplexed detection of exosome surface protein markers.Lung cancer-derived samples showed much higher(~sixfold-tenfold)fluorescence intensity than endothelial cell samples,and different types of lung cancer samples showed distinctive marker expression levels.Additionally,using the chip to detect clinical plasma samples from cancer patients showed good diagnostic power and revealed a well consistency with conventional tests for serological markers.These results provide insight into a promising method for exosome tumor marker detection and early-stage cancer diagnosis.展开更多
We report on InP-based metamorphic InGaAs photodiodes grown by gas source molecular beam epitaxy (MBE), in which a relatively thin compositional graded wide band-gap InxAl1-xAs buffer layer is adopted. In the photod...We report on InP-based metamorphic InGaAs photodiodes grown by gas source molecular beam epitaxy (MBE), in which a relatively thin compositional graded wide band-gap InxAl1-xAs buffer layer is adopted. In the photodiodes, InAiAs is also taken as cap layers, so this structure is suitable for both front and back illuminations. At room temperature the photodiodes show 50% cut-off wavelength of 2.66μm, with measured peak detectivity of 4.91×10^9 cmHz^1/2/W at 2.57μm, and the typical dark current and RoA are 7.68μA/0.94Ωcm^2 and 291 nA/24.29Ωcm^2 at 290 K and 150 K respectively for the devices in diameter 300 μm. Their performances are compared to the 2.5μm cut-off photodiodes with similar structures.展开更多
We have performed the calculation of resonant-phonon transition in a terahertz quantum cascade laser. The electron wavefunctions and energy levels are obtained by solving the Schroedinger and Poisson equations selfcon...We have performed the calculation of resonant-phonon transition in a terahertz quantum cascade laser. The electron wavefunctions and energy levels are obtained by solving the Schroedinger and Poisson equations selfconsistently. The scattering rates of the confined, interface, and bulk phonons are calculated by using the Fermi golden rule. It has been shown that the confined phonon scattering is comparable to the interface phonon scattering and should be taken into consideration in the calculation.展开更多
The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and grow...The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.展开更多
First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica.The preferable structure of NBOHC-E'(non-bridging oxygen hole center(NBOHC) and E' center) pair d...First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica.The preferable structure of NBOHC-E'(non-bridging oxygen hole center(NBOHC) and E' center) pair defect is predicted to be located at 2.4 A^° for the Si-O bond length.The quasi-particle GOWO calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties.With the stretching of the Sil-O1 bond,an obvious redshift can be observed in the absorption spectrum.In the case of NBOHC-E' pair,the p-orbital DOS of Si1 atom will shift to the conduction band.Two obvious absorption peaks can be observed in the absorption spectrum.The calculation reproduced the peak positions of the well-known optical absorption bands.展开更多
A new photon-in/photon-out endstation at beamline 02B02 of the Shanghai Synchrotron Radiation Facility for studying the electronic structure of energy materials has been constructed and fully opened to users.The endst...A new photon-in/photon-out endstation at beamline 02B02 of the Shanghai Synchrotron Radiation Facility for studying the electronic structure of energy materials has been constructed and fully opened to users.The endstation has the capability to perform soft x-ray absorption spectroscopy in total electron yield and total fluorescence yield modes simultaneously.The photon energy ranges from 40 eV to 2000 eV covering the K-edge of most low Z-elements and the L-edge of 3d transition-metals.The new self-designed channeltron detector allows us to achieve good fluorescence signals at the low photon flux.In addition,we synchronously collect the signals of a standard reference sample and a gold mesh on the upstream to calibrate the photon energy and monitor the beam fluctuation,respectively.In order to cross the pressure gap,in situ gas and liquid cells for soft x-ray absorption spectroscopy are developed to study the samples under realistic working conditions.展开更多
The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with ...The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.展开更多
A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphol...Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes...A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes when the transmitter is switched off.If a low-Tc SQUID loses its lock,it becomes impossible for the low-Tc SQUID TEM system to function normally and stably for a long period of time.This hinders the practical use of the system.In field experiments,the transmitting current is accurately measured,the voltage overshoot and current spike data are recorded,and the gradient of the primary magnetic field at the center of the transmitting loop is calculated.After analyzing the results of field experiments,it was found that when the gradient of the primary magnetic field far exceeds the slew rate of a low-Tc SQUID,the low-Tc SQUID loses its lock.Based on the mechanisms of the transmitting oscillation,an RC serial and multi-parallel capacity snubber circuit used to suppress such oscillation is proposed.The results of simulation and field experiments show that,when using a 100 m×100 m transmitting loop,the gradient of the primary magnetic field is suppressed from 101.4 to 2.4 mT/s with a transmitting current of 40 A,and from 29.6 to 1.4 mT/s with a transmitting current of 20 A.Therefore,it can be concluded that the gradient of the primary magnetic field is below the slew rate of a low-Tc SQUID after adopting the proposed RC serial and multi-parallel capacity snubber circuit.In conclusion,the technique proposed in this paper solves the problem of a lost lock of a low-Tc SQUID,ensuring that the low-Tc SQUID TEM system functions stably for a long period of time,and providing technical assurance for ground TEM exploration at an additional depth.展开更多
In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles a...In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.展开更多
An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured ...An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.展开更多
In the paper, chemical mechanical planarization (CMP) of Ge2 Sb2Te5 (GST) is investigated using IC 1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR)...In the paper, chemical mechanical planarization (CMP) of Ge2 Sb2Te5 (GST) is investigated using IC 1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC 1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.展开更多
Photoelectrochemical(PEC)water-splitting using solar energy holds great promise for the renewable energy future,and a key challenge in the development of industry viable PEC devices is the unavailability of high-effic...Photoelectrochemical(PEC)water-splitting using solar energy holds great promise for the renewable energy future,and a key challenge in the development of industry viable PEC devices is the unavailability of high-efficient photoanodes.Herein,we designed a TiO_(2) model photocatalyst with nano-groove pattern and different surface orientation using low-energy Ar+irradiation and photoetching of TiO_(2),and significantly improved the intrinsic activity for PEC water oxidation.High-resolution transmission electron microscopy directly manifests that the grooves consist of highly stepped surface with<110>steps and well-crystallized.Transient absorption spectroscopy reveals the groove surface that allows for increased recovery lifetime,which ensures promoted electron-hole separation efficiency.Surface photovoltage directly shows the carrier separation and transportation behaviors,verified by selective photodeposition,demonstrating the groove surface on TiO_(2) contributes to electron-hole separation.This work proposes an efficient and scalable photoanode strategy,which potentially can open new opportunities for achieving efficient PEC water oxidation performance.展开更多
We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2...We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.展开更多
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(52103090)the Natural Science Foundation of Guangdong Province(2022A1515011780)Autonomous deployment project of China National Key Laboratory of Materials for Integrated Circuits(NKLJC-Z2023-B03).
文摘The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices.
基金supported by the Innovation Program for Quantum Science and Technology (2023ZD0301000)the National Science Fund for Distinguished Young Scholars (62325509)+3 种基金the National Natural Science Foundation of China (62235019,61875220,61927813,61991430,62035005,62105351,62275258,62035014,and 62305364)Science and Technology Commission of Shanghai Municipality (21ZR1474600)the"From 0 to 1"Innovation Program of the Chinese Academy of Sciences (ZDBS-LY-JSC009)the CAS Project for Young Scientists in Basic Research (YSBR-069).
文摘Frequency combs with equally spaced frequency lines show great potentials for applications in spectroscopy,imag-ing,communications,and so on.In the terahertz frequency region,the quantum cascade laser(QCL)is an ideal radiation source for frequency comb and dual-comb operation.The systematic evaluation of phase noise characteristics of terahertz QCL frequency comb and dual-comb sources is of great importance for high precision measurements.In this work,we present detailed measurements and analysis of the phase noise characteristics of terahertz QCL frequency comb and dual-comb sources emitting around 4.2 THz with repetition frequencies of~6.2 GHz.The measurement results for the current noise of the direct current(DC)sources(that are used to electrically pump the terahertz QCLs)indicate that at 100 Hz,the current noise for DC-1 and DC-2 is 0.3895 and 0.0982 nA/Hz1/2,respectively.Such levels of current noise can be safely disregarded.The phase noise of radio frequency(RF)generators(that are employed for injection locking and phase locking),intermode beatnotes,and dual-comb signals with and without phase-locked loop(PLL)are all measured and compared.The experimental results show that in the free-running mode,the phase noise of the intermode beatnote signals is always lower than that of the dual-comb sig-nals across all frequencies.Additionally,the phase noise induced by the RF generators is negligible.By employing the phase lock-ing technique,the phase noise of the intermode beatnote and dual-comb signals in the low offset frequency band can be signifi-cantly suppressed.At an offset frequency of 100 Hz,the measured phase noise values of the dual-comb line without and with phase locking are 15.026 and-64.801 dBc/Hz,respectively.
基金supported by ShanghaiTech University Startup Fund 2017F0203-000-14the National Natural Science Foundation of China(Grant No.52131303)+1 种基金Natural Science Foundation of Shanghai(Grant No.22ZR1442300)in part by CAS Strategic Science and Technology Program(Grant No.XDA18000000).
文摘Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
基金Project(065211030) supported by Municipal Science and Technology Commission of Shanghai, China
文摘The influence of strontium(Sr) and rare earth(RE) elements on the corrosion behavior of AZ91D magnesium alloy was investigated by conventional corrosion testing and electrochemical measurements in 3.5% NaCl solution.After comparing the mass loss and hydrogen evolution of the samples,the microstructures of the alloys and the morphologies of their corrosion product films were characterized by electron probe microanalysis-energy dispersive spectrometry(EPMA-EDS) and Auger electron spectroscopy(AES).Compared with individual addition of Sr or RE to AZ91D,the combinative addition of 0.5% Sr and 1% RE to AZ91D successfully decreases the corrosion rate further,which can be attributed to the depression of micro-galvanic couples,as well as the formation of more protective film due to aluminum enrichment.The combinative addition of strontium and rare earth elements to AZ91D magnesium alloy appears to be a promising approach to increase its corrosion resistance.
基金supported by Grants from National Key Research and Development Program of China(Nos.2018YFA0108202 and 2017YFA0205300)National Science Foundation of China(Nos.61571429,61571077,61801464,and 61801465)+1 种基金the STS Project of the Chinese Academy of Sciences(No.KFJ-STS-SCYD-120)the Science and Technology Commission of Shanghai Municipality(Nos.16410711800 and 4391901900).
文摘Tumor-derived exosomes are actively involved in cancer progression and metastasis and have emerged as a promising marker for cancer diagnosis in liquid biopsy.Because of their nanoscale size,complex biogenesis,and methodological limitations related to exosome isolation and detection,advancements in their analysis remain slow.Microfluidic technology offers a better analytic approach compared with conventional methods.Here,we developed a bead-based microarray for exosome isolation and multiplexed tumor marker detection.Using this method,exosomes are isolated by binding to antibodies on the bead surface,and tumor markers on the exosomes are detected through quantum dot(QD)probes.The beads are then uniformly trapped and queued among micropillars in the chip.This design benefits fluorescence observation by dispersing the signals into every single bead,thereby avoiding optical interference and enabling more accurate test results.We analyzed exosomes in the cell culture supernatant of lung cancer and endothelial cell lines,and different lung cancer markers labeled with three QD probes were used to conduct multiplexed detection of exosome surface protein markers.Lung cancer-derived samples showed much higher(~sixfold-tenfold)fluorescence intensity than endothelial cell samples,and different types of lung cancer samples showed distinctive marker expression levels.Additionally,using the chip to detect clinical plasma samples from cancer patients showed good diagnostic power and revealed a well consistency with conventional tests for serological markers.These results provide insight into a promising method for exosome tumor marker detection and early-stage cancer diagnosis.
文摘We report on InP-based metamorphic InGaAs photodiodes grown by gas source molecular beam epitaxy (MBE), in which a relatively thin compositional graded wide band-gap InxAl1-xAs buffer layer is adopted. In the photodiodes, InAiAs is also taken as cap layers, so this structure is suitable for both front and back illuminations. At room temperature the photodiodes show 50% cut-off wavelength of 2.66μm, with measured peak detectivity of 4.91×10^9 cmHz^1/2/W at 2.57μm, and the typical dark current and RoA are 7.68μA/0.94Ωcm^2 and 291 nA/24.29Ωcm^2 at 290 K and 150 K respectively for the devices in diameter 300 μm. Their performances are compared to the 2.5μm cut-off photodiodes with similar structures.
基金Supported by the National Fund for Distinguished Young Scholars of China (60425415), the Major Project of the National Science Foundation of China (10390162), and the Shanghai Municipal Commission of Science and Technology (03JC14082).
文摘We have performed the calculation of resonant-phonon transition in a terahertz quantum cascade laser. The electron wavefunctions and energy levels are obtained by solving the Schroedinger and Poisson equations selfconsistently. The scattering rates of the confined, interface, and bulk phonons are calculated by using the Fermi golden rule. It has been shown that the confined phonon scattering is comparable to the interface phonon scattering and should be taken into consideration in the calculation.
基金Supported by the National Natural Science Foundation of China under Grant No 61434006
文摘The InGaAs/InAIAs/InP high electron mobility transistor (HEM:F) structures with lattice-matched and pseudo- morphic channels are grown by gas source molecular beam epitaxy. Effects of Si ^-doping condition and growth interruption on the electrical properties are investigated by changing the Si-cell temperature, doping time and growth process. It is found that the optimal Si ^-doping concentration (Nd) is about 5.0 x 1012 cm-2 and the use of growth interruption has a dramatic effect on the improvement of electrical properties. The material structure and crystal interface are analyzed by secondary ion mass spectroscopy and high resolution transmission elec- tron microscopy. An InGaAs/InAiAs/InP HEMT device with a gate length of lOOnm is fabricated. The device presents good pinch-off characteristics and the kink-effect of the device is trifling. In addition, the device exhibits fT = 249 GHa and fmax 〉 400 GHz.
基金supported by the National Basic Research Program of China(Grant No.2014CB643900)the Open Fund of IPOC(BUPT)+2 种基金the Open Program of State Key Laboratory of Functional Materials for Informaticsthe National Natural Science Foundation for Theoretical Physics Special Fund “Cooperation Program”(Grant No.11547039)Shaanxi Provincial Institute of Scientific Research Plan Projects,China(Grant No.SLGKYQD2-05)
文摘First-principles method is used to simulate the stable structure and optical properties of a 96-atom fused silica.The preferable structure of NBOHC-E'(non-bridging oxygen hole center(NBOHC) and E' center) pair defect is predicted to be located at 2.4 A^° for the Si-O bond length.The quasi-particle GOWO calculations are performed and an accurate band gap is obtained in order to calculate the optical absorption properties.With the stretching of the Sil-O1 bond,an obvious redshift can be observed in the absorption spectrum.In the case of NBOHC-E' pair,the p-orbital DOS of Si1 atom will shift to the conduction band.Two obvious absorption peaks can be observed in the absorption spectrum.The calculation reproduced the peak positions of the well-known optical absorption bands.
基金Project supported by the National Natural Science Foundation of China(Grant No.11227902)as part of NSFC ME2 beamline project,Science and Technology Commission of Shanghai Municipality,China(Grant No.14520722100)the National Natural Science Foundation of China(Grant Nos.11905283 and U1632269)
文摘A new photon-in/photon-out endstation at beamline 02B02 of the Shanghai Synchrotron Radiation Facility for studying the electronic structure of energy materials has been constructed and fully opened to users.The endstation has the capability to perform soft x-ray absorption spectroscopy in total electron yield and total fluorescence yield modes simultaneously.The photon energy ranges from 40 eV to 2000 eV covering the K-edge of most low Z-elements and the L-edge of 3d transition-metals.The new self-designed channeltron detector allows us to achieve good fluorescence signals at the low photon flux.In addition,we synchronously collect the signals of a standard reference sample and a gold mesh on the upstream to calibrate the photon energy and monitor the beam fluctuation,respectively.In order to cross the pressure gap,in situ gas and liquid cells for soft x-ray absorption spectroscopy are developed to study the samples under realistic working conditions.
基金supported by the National Natural Science Foundation of China(Nos.61474073,61874069 and 61804157).
文摘The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
文摘Layered cathode materials of high-temperature lithium batteries, Li Ni1/3Mn1/3Co1/3O2 are synthesized by a sol-gel method with variation in final sintering temperature for borehole applications. The structure, morphology and high-temperature discharge performance of these resulting products are investigated by X-Ray Diffraction(XRD), scanning electron microscopy(SEM), laser particle size analysis, galvanostatic and pulse discharge. The results of structural analysis indicate that the sample sintered at 800 ℃ has the characteristics of good crystallinity, narrow size distribution and large specific surface area at the same time. The discharge experiments also indicate that this sample has the best electrochemical properties, with the maximum discharge capacities of 314.57 and 434.14 m Ah·g-1 at 200 and 300 ℃ respectively and the minimum cell internal resistances at both temperatures.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
基金Project(XDB 0420200)supported by Strategy Priority Research Program(B)of China
文摘A low-temperature superconducting quantum interference device(low-Tc SQUID)can improve the depth of exploration.However,a low-Tc SQUID may lose its lock owing to oscillations in the current or the occurrence of spikes when the transmitter is switched off.If a low-Tc SQUID loses its lock,it becomes impossible for the low-Tc SQUID TEM system to function normally and stably for a long period of time.This hinders the practical use of the system.In field experiments,the transmitting current is accurately measured,the voltage overshoot and current spike data are recorded,and the gradient of the primary magnetic field at the center of the transmitting loop is calculated.After analyzing the results of field experiments,it was found that when the gradient of the primary magnetic field far exceeds the slew rate of a low-Tc SQUID,the low-Tc SQUID loses its lock.Based on the mechanisms of the transmitting oscillation,an RC serial and multi-parallel capacity snubber circuit used to suppress such oscillation is proposed.The results of simulation and field experiments show that,when using a 100 m×100 m transmitting loop,the gradient of the primary magnetic field is suppressed from 101.4 to 2.4 mT/s with a transmitting current of 40 A,and from 29.6 to 1.4 mT/s with a transmitting current of 20 A.Therefore,it can be concluded that the gradient of the primary magnetic field is below the slew rate of a low-Tc SQUID after adopting the proposed RC serial and multi-parallel capacity snubber circuit.In conclusion,the technique proposed in this paper solves the problem of a lost lock of a low-Tc SQUID,ensuring that the low-Tc SQUID TEM system functions stably for a long period of time,and providing technical assurance for ground TEM exploration at an additional depth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21503263,U1632269,21473235,and 11227902)
文摘In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.
基金Supported by the Weapon Equipment Pre-Research Foundation of China under Grant No 9140A11020114ZK34147the Shanghai Municipal Natural Science Foundation under Grant Nos 15ZR1447100 and 15ZR1447200
文摘An anomalous total dose effect that the long length device is more susceptible to total ionizing dose than the short one is observed with the 0.13?μm partially depleted silicon-on-insulator technology. The measured results and 3D technology computer aided design simulations demonstrate that the devices with different channel lengths may exhibit an enhanced reverse short channel effect after radiation. It is ascribed to that the halo or pocket implants introduced in processes results in non-uniform channel doping profiles along the device length and trapped charges in the shallow trench isolation regions.
基金Project supported by the National Basic Research Program of China(Grant Nos.2010CB934300,2013CBA01900,2011CBA00607,and 2011CB9328004)the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA09020402)+2 种基金the Fund from the Science and Technology Council of Shanghai,China(Grant No.13DZ2295700)the Science Fund from the Chinese Academy of Sciences(Grant No.20110490761)the National Natural Science Foundation of China(Grant Nos.61076121,61176122,and 61106001)
文摘In the paper, chemical mechanical planarization (CMP) of Ge2 Sb2Te5 (GST) is investigated using IC 1010 and Politex reg pads in acidic slurry. For the CMP with blank wafer, it is found that the removal rate (RR) of GST increases with the increase of pressure for both pads, but the RR of GST polished using IC 1010 is far more than that of Politex reg. To check the surface defects, GST film is observed with an optical microscope (OM) and scanning electron microscope (SEM). For the CMP with Politex reg, many spots are observed on the surface of the blank wafer with OM, but no obvious spots are observed with SEM. With regard to the patterned wafer, a few stains are observed on the GST cell, but many residues are found on other area with OM. However, from SEM results, a few residues are observed on the GST cell, more dielectric loss is revealed about the trench structure. For the CMP with IC1010, the surface of the polished blank wafer suffers serious scratches found with both OM and SEM, which may result from a low hardness of GST, compared with those of IC1010 and abrasives. With regard to the patterned wafer, it can achieve a clean surface and almost no scratches are observed with OM, which may result from the high-hardness SiO2 film on the surface, not from the soft GST film across the whole wafer. From the SEM results, a clean interface and no residues are observed on the GST surface, and less dielectric loss is revealed. Compared with Politex reg, the patterned wafer can achieve a good performance after CMP using IC1010.
基金support from the Ministry of Science and Technology of China (No. 2016YFA0202803 and 2018YFA0704503)the National Natural Science Foundation of China (21991152,21991150, 21802096, 21832004, 21902179 and 22072093)+2 种基金the Shanghai-XFEL Beamline Project (SBP) (no. 31011505505885920161A2101001)supported by ME2 project under contract No.11227902 from National Natural Science Foundation of Chinasupport of Shanghai Sailing Program (No. 19YF1455600)。
文摘Photoelectrochemical(PEC)water-splitting using solar energy holds great promise for the renewable energy future,and a key challenge in the development of industry viable PEC devices is the unavailability of high-efficient photoanodes.Herein,we designed a TiO_(2) model photocatalyst with nano-groove pattern and different surface orientation using low-energy Ar+irradiation and photoetching of TiO_(2),and significantly improved the intrinsic activity for PEC water oxidation.High-resolution transmission electron microscopy directly manifests that the grooves consist of highly stepped surface with<110>steps and well-crystallized.Transient absorption spectroscopy reveals the groove surface that allows for increased recovery lifetime,which ensures promoted electron-hole separation efficiency.Surface photovoltage directly shows the carrier separation and transportation behaviors,verified by selective photodeposition,demonstrating the groove surface on TiO_(2) contributes to electron-hole separation.This work proposes an efficient and scalable photoanode strategy,which potentially can open new opportunities for achieving efficient PEC water oxidation performance.
基金Supported by the National Natural Science Foundation of China under Grant No 11704161the Natural Science Foundation of Jiangsu Province under Grant Nos BK20170309 and BK20151172the Changzhou Science and Technology Bureau under Grant Nos CJ20159049 and CJ20160028
文摘We elucidate the importance of a capping layer on the structural evolution and phase change properties of carbondoped Ge2 Sb2 Te5(C-GST) films during heating in air. Both the C-GST films without and with a thin SiO2 capping layer(C-GST and C-GST/SiO2) are deposited for comparison. Large differences are observed between C-GST and C-GST/SiO2 films in resistance-temperature, x-ray diffraction, x-ray photoelectron spectroscopy,Raman spectra, data retention capability and optical band gap measurements. In the C-GST film, resistancetemperature measurement reveals an unusual smooth decrease in resistance above 110℃ during heating. Xray diffraction result has excluded the possibility of phase change in the C-GST film below 170℃. The x-ray photoelectron spectroscopy experimental result reveals the evolution of Te chemical valence because of the carbon oxidation during heating. Raman spectra further demonstrate that phase changes from an amorphous state to the hexagonal state occur directly during heating in the C-GST film. The quite smooth decrease in resistance is believed to be related with the formation of Te-rich GeTe4-n Gen(n = 0, 1) units above 110℃ in the C-GST film. The oxidation of carbon is harmful to the C-GST phase change properties.