Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ...Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.展开更多
Phosphorus has been closely associated with eutrophication, a growing ecological problem globally. Because bacterial and algae responds to organic and inorganic nutrients differently, developing an accurate analytical...Phosphorus has been closely associated with eutrophication, a growing ecological problem globally. Because bacterial and algae responds to organic and inorganic nutrients differently, developing an accurate analytical method for the determination of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) is critical for understanding eutrophication. This paper describes analytical variations observed in laboratory experiments for the determination of DIP and DOP. Several experimental parameters including phosphorus reagents’ temperature, water sample matrix, pH, and autoclave methods are investigated. With the optimization of the autoclave procedure, the recoveries of 8 model organic phosphorus compounds (i.e. adenosine-5-triphosphate di-sodium salt (ATP), phytic acid (PTA), sodium tripolyphosphate (STP), methyltriphenylphosphonium bromide (MPT), p-nitrophenyl phosphate magnesium salt (p-NPP), β-D-glucose-6-phosphate monosodium salt (G-6-P) and cocarboxylase (COCA)) are all well above 90% indicating significant analytical method improvement.展开更多
There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With...There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With changes of socio-economic factors as well as the geophysical conditions, there are dramatic changes on the spatial patterns of forest area. In this sense, it is of great significance to shed light on the dynamics of forest area changes to find the underlining reasons for shaping the changing patterns of forest area in Northeast China. To explore the dynamics of forest area change in Northeast China, an econometric model is developed which is composed of three equations identifying forestry production, conversion from open forest to closed forest and conversion from other land uses to closed forest so as to explore the impacts on the forest area changes from demographic, social, economic, location and geophysical factors. On this basis, we employ the Dynamics of Land System (DLS) model to simulate land-use conversions between forest area and non-forest cover and the land-use conversions within the sub-classes of forest area for the period 2000-2020 under business as usual scenario, environmental protection scenario and economic growth scenario. The simulation results show that forest area will expand continuously and there exist various kinds of changing patterns for the sub-classes of forest area, for example, closed forest will expand continuously and open forest and shrub will decrease a little bit, while area of other forest will keep intact. The research results provide meaningful decision-making information for conserving and exploiting the forest resources and makJng out the planning for forestry production Jn the Northeast China region.展开更多
Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a no...Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.展开更多
Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water ...Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water users and inadequate execution of designed e-flow supply plans,we propose that designing weir heights without explicitly considering e-flows is another major cause of this problem.In this paper,we suggest that the measures for satisfying e-flows be extended from the water supply stage to the river channel design stage.We establish a new weir height determination framework that would more effectively satisfy the required e-flows.The new framework differs from previous frameworks,in which flood control and water retention are the major concerns and the flow during floods is set as the inflow.In the new framework,e-flow provision and flow velocity maintenance are added concerns and the actual flows for e-flow supply are set as the inflow.As a case study of the new framework’s effectiveness,we applied it to the Shiwuli River,a typical channelized urban river in Hefei,China.The old framework specified too-high weir height to meet the e-flow requirements,whereas the new framework offered more reasonable heights that improved e-flow provision.展开更多
Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision re...Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision requirements and pollutant dilution requirements, To avoid flood risk, however, many urban rivers have been transformed into straight, trapezoidal-profiled concrete channels, leading to the disappearance of valuable species, With the construction of water pollution-control projects, pollutant inputs into rivers have been effectively controlled in some urban rivers, For these rivers, the e-flows determined by tradi- tional methods will be very small, and will consequently lead to a low priority being given to river pro- tection in future water resources allocation and management, To more effectively assess the e-flows of channelized urban rivers, we propose three e-flow degrees, according to longitudinal hydrological con- nectivity (high, medium, and low), in addition to the pollutant dilution water requirement determined by the mass-balance equation, In the high connectivity scenario, the intent is for the e-flows to maintain flow velocity, which can ensure the self-purification of rivers and reduce algal blooms; in the medium connectivity scenario, the intent is for the e-flows to permanently maintain the longitudinal hydrological connectivity of rivers that are isolated into several ponds by means of weirs, in order to ensure the exchange of material, energy, and information in rivers; and in the low connectivity scenario, the intent is for the e-flows to intermittently connect isolated ponds every few days (which is designed to further reduce e-flows), The proposed methods have been used in Shiwuli River, China, to demonstrate their effectiveness, The new methods can offer more precise and realistic e-flow results and can effectively direct the construction and management of e-flow supply projects,展开更多
The aim of this study was to investigate the release of inorganic and organic phosphorus species from particles in rivers and estuaries during resuspension events such as storm, wind and tidal induced turbulence. To a...The aim of this study was to investigate the release of inorganic and organic phosphorus species from particles in rivers and estuaries during resuspension events such as storm, wind and tidal induced turbulence. To achieve this aim, laboratory beaker experiments were designed with autoanalyzer 3 (AA3). The study first investigates phosphorus equilibration in ultra-pure water (UHP) water, biotic river water and abiotic river water under short term and long term conditions. Then, three typical organic and inorganic phosphorus compounds were selected (orthophosphate, phytic acid (PTA) and β-D-glucose-6-phosphate monosodium salt (G-6-P)) to simulate the effect of addition input to river and estuaries in the time period of 150 h. The results show that in a turbulent river, dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) will reach equilibrium between the particulate matter and the water column within 24 h. Additional input of DIP or DOP to the river, has different effects to the river nutrients balance. The buffering capacity of the suspended particulate matter (SPM) plays an important role and behavior difference to the inorganic and various organic phosphorus compounds.展开更多
Effective urban land-use re-planning and the strategic arrangement of drainage pipe networks can significantly enhance urban flood defense capacity.Aimed at reducing the potential risks of urban flooding,this paper pr...Effective urban land-use re-planning and the strategic arrangement of drainage pipe networks can significantly enhance urban flood defense capacity.Aimed at reducing the potential risks of urban flooding,this paper presents a straightforward and efficient approach to an urban distributed runoff model(UDRM).The model is developed to quantify the discharge and water depth within urban drainage pipe networks under varying rainfall intensities and land-use scenarios.The Nash efficiency coefficient of UDRM exceeds 0.9,which indicates its high computational efficiency and potential benefit in predicting urban flooding.The prediction of drainage conditions under both current and re-planned land-use types is achieved by adopting different flood recurrence intervals.The findings reveal that the re-planned land-use strategies could effectively diminish flood risk upstream of the drainage pipe network across 20-year and 50-year flood recurrence intervals.However,in the case of extreme rainfall events(a 100-year flood recurrence),the re-planned land-use approach fell short of fulfilling the requirements necessary for flood disaster mitigation.In these instances,the adoption of larger-diameter drainage pipes becomes an essential requisite to satisfy drainage needs.Accordingly,the proposed UDRM effectively combines land-use information with pipeline data to give practical suggestions for pipeline modification and land-use optimization to combat urban floods.Therefore,this methodology warrants further promotion in the field of urban re-planning.展开更多
The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance ...The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...展开更多
Adsorption experiments were carried out to investigate the sorption behaviors of naphthalene and phenanthrene in six different soils and to determine the effects of temperature, linear alkylbenzene sulfonate (LAS) a...Adsorption experiments were carried out to investigate the sorption behaviors of naphthalene and phenanthrene in six different soils and to determine the effects of temperature, linear alkylbenzene sulfonate (LAS) and cetylrimethyl ammonium bromide (CTAB) on sorption. The results show that for a given sorbent phenanthrene exhibited greater nonlinear and stronger sorption than naphthalene. There was a strong negative correlation for the Koc values with organic carbon content (foc). The increase of temperature was not favorable to sorption. Sorption decreased along with the increasing aqueous LAS concentration from 0 to 1000 mg/L. At low CTAB concentration (〈 100 mg/L), the adsorption increased as CTAB hemimicelles formed on the soil surface. At high concentration, CTAB decreased the adsorption by occupying active hydrophobic adsorption sites and solubilization of naphthalene and phenanthrene.展开更多
The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of ...The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.展开更多
The driving factors of runoff changes can be divided into precipitationfactor and non-precipitation factor, and they can also be divided into natural factor and humanactivity factor. In this paper, the ways and method...The driving factors of runoff changes can be divided into precipitationfactor and non-precipitation factor, and they can also be divided into natural factor and humanactivity factor. In this paper, the ways and methods of these driving factors impacting on runoffchanges are analyzed at first, and then according to the relationship between precipitation andrunoff, the analytical method about impacts of precipitation and non-precipitation factors onbasin's natural runoff is derived. The amount and contribution rates of the two factors impacting onnatural runoff between every two adjacent decades during 1956-1998 are calculated in the YellowRiver Basin (YRB). The results show that the amount and contribution rate of the two factorsimpacting on natural runoff are different in different periods and regions. For the YRB, thenon-precipitation impact is preponderant for natural runoff reduction after the 1970s. Finally, bychoosing main factors impacting on the natural runoff, one error back-propagation (BP) artificialneural network (ANN) model has been set up, and the impact of human activities on natural runoffreduction in the YRB is simulated. The result shows that the human activities could cause a 77 x10^8 m^3·a^(-1) reduction of runoff during 1980-1998 according to the climate background of1956-1979.展开更多
In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a conce...In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin.展开更多
A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Fe...A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 106, an irrigation area of 375.521 km2, a livestock of 0.7732 × 106, and an industrial value added of ¥193.14 × 109 (i.e. about US$28.285 × 109) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system.展开更多
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow ...Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.展开更多
The weekly water quality monitor data of Liuhai lakes between April 2003 and November 2004 in Beijing City were used as an example to build an artificial neural networks (ANN) model and a multi-varieties regression ...The weekly water quality monitor data of Liuhai lakes between April 2003 and November 2004 in Beijing City were used as an example to build an artificial neural networks (ANN) model and a multi-varieties regression model respectively for predicting the fresh water algae bloom. The different predicted abilities of the two methods in Liuhai lakes were compared. A principle analysis method was first used to select the input variables of the models to avoid the phenomenon of collinearity in the data. The results showed that the input variables for the artificial neural networks were T, TP, transparency(SD), DO, chlorophyll-a (Chl-a),pH and the output variable was Chl-a. A three layer Levenberg-Marguardt feed forward leaming algorithm in ANN was used to model the eutrophication process of Liuhai lakes. 20 nodes in hidden layer and 1 node of output for the ANN model had been optimized by trial and error method. A sensitivity analysis of the input variables was performed to evaluate their relative significance in determining the predicted values. The correlation coefficient between predicted value and observed value in all data and in test data were 0.717 and 0.816 respectively in the artificial neural networks. The stepwise regression method was used to simulate the linear relation between Chl-a and temperature, of which the correlation coefficient was 0.213. By comparing the results of the two models, it was found that neural network models were able to simulate non-linear behavior in the water eutrophication process of Liuhai lakes reasonably and could successfully estimate some extreme values from calibration and test data sets.展开更多
Food safety and its related influencing factors in China are the hot research topics currently,and cultivated land conversion is one of the significant factors influencing food safety in China.Taking the North China P...Food safety and its related influencing factors in China are the hot research topics currently,and cultivated land conversion is one of the significant factors influencing food safety in China.Taking the North China Plain as the study area,this paper examines the changes of cultivated land area using satellite images,estimates land productivity from 1985 to 2005 using the model of Estimation System for Land Productivity(ESLP),and analyzes the impact of cultivated land conversion on the land production.Compared with the grain yield data from statistical yearbooks,the results indicate that ESLP model is an effective tool for estimating land productivity.Land productivity in the North China Plain showed a slight decreasing trend from 1985 to 2005,spatially,increased from the north to the south gradu-ally,and the net changes varied in different areas.Cultivated land area recorded a marginal decrease of 8.0 × 105 ha,mainly converted to other land uses.Cultivated land conversion had more significant negative impacts on land produc-tion than land productivity did.Land production decreased by about 6.48 × 106 t caused by cultivated land conversion between 1985 and 2005,accounting for 91.9% of the total land production reduction.Although the land productivity increased in Anhui and Jiangsu provinces,it can not offset the overall adverse effects caused by cultivated land con-version.Therefore,there are significant meanings to control the cultivated land conversion and improve the land pro-ductivity for ensuring the land production in the North China Plain.展开更多
Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mi...Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mitigation measure for ecosystems that have been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. However, the current understanding of the theory and practice of ecological offsetting for coastal wetlands is extremely limited in many developing countries. We conducted a review of ecological offsetting for coastal wetlands projects and studies in China in 1979–2017 to explore the application and limitations of ecological offsetting theory. It was found that China's coastal ecological offsetting regime has recently entered a rapidly developing stage, with an increasing number of different types of offsetting projects conducted, but theoretical research lags behind practical applications. Considerable governmental, social, technological and ethical challenges remain to resolve. Coastal ecological offsetting schemes have been inconsistent in meeting conservation objectives or preventing net losses because of the challenges of ensuring they are fully consistent in practice(mainly in-kind offsets) and theory(mainly out-of-kind offsets). Ecological offsetting projects were primarily implemented by government, developers, and non-profit organizations. The available funding of coastal ecological offsetting projects is insufficient, which makes ecological offsetting a risky operation. Therefore, we propose strategies for improvement that integrate the consideration of theoretical and practical challenges in the offsetting process, while providing a scientific basis and directional guidance for the future practice of biodiversity conservation and environmental management.展开更多
Little information is available on the impacts of coastal reclamation on wetland loss in large-river deltas at a regional scale.Using remote sensing data of coastal wetland and reclamation in four deltas in China from...Little information is available on the impacts of coastal reclamation on wetland loss in large-river deltas at a regional scale.Using remote sensing data of coastal wetland and reclamation in four deltas in China from 1978 to 2014, we tracked their continuous area changes in four periods: 1978–1990, 1990–2000, 2000–2008, and 2008–2014. The areal relation between wetland loss and reclamation was quantified and used to identify coastal reclamation mode intensity coupled with another three indicators: reclamation rate,accretion rate and land-use intensity of coastal reclamation. The results showed that coastal reclamation driven by economic development reduced, or even reverse the original growth of delta which was determined by the offset between wetland acceleration rate and wetland loss rate. Generally, the area of reclamation showed a positive linear correlation with the area of wetland loss. The findings imply that human activities should control reclamation rate and intensity to alleviate total wetland loss and maintain wetland ’net gain’.Inappropriate coastal reclamation modes can magnify total wetland loss;therefore, coastal reclamation with a slow increment rate and low impervious surface percent is of great importance for sustainable development in future coastal management.展开更多
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dyna...Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.展开更多
基金the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.
文摘Phosphorus has been closely associated with eutrophication, a growing ecological problem globally. Because bacterial and algae responds to organic and inorganic nutrients differently, developing an accurate analytical method for the determination of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) is critical for understanding eutrophication. This paper describes analytical variations observed in laboratory experiments for the determination of DIP and DOP. Several experimental parameters including phosphorus reagents’ temperature, water sample matrix, pH, and autoclave methods are investigated. With the optimization of the autoclave procedure, the recoveries of 8 model organic phosphorus compounds (i.e. adenosine-5-triphosphate di-sodium salt (ATP), phytic acid (PTA), sodium tripolyphosphate (STP), methyltriphenylphosphonium bromide (MPT), p-nitrophenyl phosphate magnesium salt (p-NPP), β-D-glucose-6-phosphate monosodium salt (G-6-P) and cocarboxylase (COCA)) are all well above 90% indicating significant analytical method improvement.
文摘There is plenty of forests in Northeast China which contributes a lot to the conservation of water and land resources, produces timber products, and provides habitats for a huge number of wild animals and plants. With changes of socio-economic factors as well as the geophysical conditions, there are dramatic changes on the spatial patterns of forest area. In this sense, it is of great significance to shed light on the dynamics of forest area changes to find the underlining reasons for shaping the changing patterns of forest area in Northeast China. To explore the dynamics of forest area change in Northeast China, an econometric model is developed which is composed of three equations identifying forestry production, conversion from open forest to closed forest and conversion from other land uses to closed forest so as to explore the impacts on the forest area changes from demographic, social, economic, location and geophysical factors. On this basis, we employ the Dynamics of Land System (DLS) model to simulate land-use conversions between forest area and non-forest cover and the land-use conversions within the sub-classes of forest area for the period 2000-2020 under business as usual scenario, environmental protection scenario and economic growth scenario. The simulation results show that forest area will expand continuously and there exist various kinds of changing patterns for the sub-classes of forest area, for example, closed forest will expand continuously and open forest and shrub will decrease a little bit, while area of other forest will keep intact. The research results provide meaningful decision-making information for conserving and exploiting the forest resources and makJng out the planning for forestry production Jn the Northeast China region.
基金Supported by the Training Project of Beijing Young Talents(2114751406)the Beijing Social Science Fund(15JGB052)+1 种基金the Beijing Municipal Science and Technology Project(D161100005916004)Beijing outstanding talent project for excellent youth team(2015000026833T0000)
文摘Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.
基金We thank the National Key Research and Development Program of China(2017YFC0404504)the Fund for Innovative Research Group of the National Natural Science Foundation of China(51721093)the National Natural Science Foundation of China(71861137001)for their financial support.
文摘Many studies have been conducted on environmental flow(e-flow)assessment and supply,but e-flow shortages remain common in many urban rivers.In addition to known reasons such as ever-increasing competition among water users and inadequate execution of designed e-flow supply plans,we propose that designing weir heights without explicitly considering e-flows is another major cause of this problem.In this paper,we suggest that the measures for satisfying e-flows be extended from the water supply stage to the river channel design stage.We establish a new weir height determination framework that would more effectively satisfy the required e-flows.The new framework differs from previous frameworks,in which flood control and water retention are the major concerns and the flow during floods is set as the inflow.In the new framework,e-flow provision and flow velocity maintenance are added concerns and the actual flows for e-flow supply are set as the inflow.As a case study of the new framework’s effectiveness,we applied it to the Shiwuli River,a typical channelized urban river in Hefei,China.The old framework specified too-high weir height to meet the e-flow requirements,whereas the new framework offered more reasonable heights that improved e-flow provision.
文摘Assessing environmental flows (e-flows) for urban rivers is important for water resources planning and river protection, Many e-flow assessment methods have been established based on species' habitat pro- vision requirements and pollutant dilution requirements, To avoid flood risk, however, many urban rivers have been transformed into straight, trapezoidal-profiled concrete channels, leading to the disappearance of valuable species, With the construction of water pollution-control projects, pollutant inputs into rivers have been effectively controlled in some urban rivers, For these rivers, the e-flows determined by tradi- tional methods will be very small, and will consequently lead to a low priority being given to river pro- tection in future water resources allocation and management, To more effectively assess the e-flows of channelized urban rivers, we propose three e-flow degrees, according to longitudinal hydrological con- nectivity (high, medium, and low), in addition to the pollutant dilution water requirement determined by the mass-balance equation, In the high connectivity scenario, the intent is for the e-flows to maintain flow velocity, which can ensure the self-purification of rivers and reduce algal blooms; in the medium connectivity scenario, the intent is for the e-flows to permanently maintain the longitudinal hydrological connectivity of rivers that are isolated into several ponds by means of weirs, in order to ensure the exchange of material, energy, and information in rivers; and in the low connectivity scenario, the intent is for the e-flows to intermittently connect isolated ponds every few days (which is designed to further reduce e-flows), The proposed methods have been used in Shiwuli River, China, to demonstrate their effectiveness, The new methods can offer more precise and realistic e-flow results and can effectively direct the construction and management of e-flow supply projects,
文摘The aim of this study was to investigate the release of inorganic and organic phosphorus species from particles in rivers and estuaries during resuspension events such as storm, wind and tidal induced turbulence. To achieve this aim, laboratory beaker experiments were designed with autoanalyzer 3 (AA3). The study first investigates phosphorus equilibration in ultra-pure water (UHP) water, biotic river water and abiotic river water under short term and long term conditions. Then, three typical organic and inorganic phosphorus compounds were selected (orthophosphate, phytic acid (PTA) and β-D-glucose-6-phosphate monosodium salt (G-6-P)) to simulate the effect of addition input to river and estuaries in the time period of 150 h. The results show that in a turbulent river, dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) will reach equilibrium between the particulate matter and the water column within 24 h. Additional input of DIP or DOP to the river, has different effects to the river nutrients balance. The buffering capacity of the suspended particulate matter (SPM) plays an important role and behavior difference to the inorganic and various organic phosphorus compounds.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202002)the National Natural Science Foundation of China(Grant Nos.52025092,52209087 and 52379065).
文摘Effective urban land-use re-planning and the strategic arrangement of drainage pipe networks can significantly enhance urban flood defense capacity.Aimed at reducing the potential risks of urban flooding,this paper presents a straightforward and efficient approach to an urban distributed runoff model(UDRM).The model is developed to quantify the discharge and water depth within urban drainage pipe networks under varying rainfall intensities and land-use scenarios.The Nash efficiency coefficient of UDRM exceeds 0.9,which indicates its high computational efficiency and potential benefit in predicting urban flooding.The prediction of drainage conditions under both current and re-planned land-use types is achieved by adopting different flood recurrence intervals.The findings reveal that the re-planned land-use strategies could effectively diminish flood risk upstream of the drainage pipe network across 20-year and 50-year flood recurrence intervals.However,in the case of extreme rainfall events(a 100-year flood recurrence),the re-planned land-use approach fell short of fulfilling the requirements necessary for flood disaster mitigation.In these instances,the adoption of larger-diameter drainage pipes becomes an essential requisite to satisfy drainage needs.Accordingly,the proposed UDRM effectively combines land-use information with pipeline data to give practical suggestions for pipeline modification and land-use optimization to combat urban floods.Therefore,this methodology warrants further promotion in the field of urban re-planning.
基金the National Basic Research Program (973) of China (No.2004CB418502,2003CB415002)the National Natural Science Foundation of China (No.29977002).
文摘The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...
基金supported by the National NaturalScience Foundation of China (No. 40372109)the National Basic Research Program (973) of China (No.2004CB418502).
文摘Adsorption experiments were carried out to investigate the sorption behaviors of naphthalene and phenanthrene in six different soils and to determine the effects of temperature, linear alkylbenzene sulfonate (LAS) and cetylrimethyl ammonium bromide (CTAB) on sorption. The results show that for a given sorbent phenanthrene exhibited greater nonlinear and stronger sorption than naphthalene. There was a strong negative correlation for the Koc values with organic carbon content (foc). The increase of temperature was not favorable to sorption. Sorption decreased along with the increasing aqueous LAS concentration from 0 to 1000 mg/L. At low CTAB concentration (〈 100 mg/L), the adsorption increased as CTAB hemimicelles formed on the soil surface. At high concentration, CTAB decreased the adsorption by occupying active hydrophobic adsorption sites and solubilization of naphthalene and phenanthrene.
基金jointly supported by a key project of the Chinese Academy of Sciences (Grant No. XDB05030301)the National Natural Science Foundation of China (Grant Nos. 40905055 and 41175105)the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (Grant No. 13K04ESPCP)
文摘The impacts of emissions from industry,power plant,transportation,residential,and biogenic sources on daily maximum surface ozone (O3DM) over the Beijing-Tianjin-Hebei (BTH) region in North China in the summer of 2007 were examined in a modeling study.The modeling system consisted of the Weather Research and Forecasting (WRF) model and the photochemical dispersion model,CAMx.The factor separation technique (FST) was used to quantify the effect of individual emission source types and the synergistic interactions among two or more types.Additionally,the effectiveness of emission reduction scenarios was explored.The industry,power plant,and transportation emission source types were found to be the most important in terms of their individual effects on O3DM.The key contributor to high surface O3 was power plant emissions,with a peak individual effect of 40 ppbv in the southwestern BTH area.The individual effect from the biogenic emission category was quite low.The synergistic effects from the combinations of each pair of anthropogenic emission types suppressed O3 formation,while the synergistic effects for combinations of three were favorable for O3 formation when the industrial and power plant emission source types coexisted.The quadruple synergistic effects were positive only with the combination of power plant,transportation,residential,and biogenic sources,while the quintuple synergistic effect showed only minor impacts on O3DM concentrations.A 30% reduction in industrial and transportation sources produced the most effective impacts on O3 concentrations,with a maximum decrease of 20 ppbv.These results suggested that the synergistic impacts among emission source types should be considered when formulating emission control strategies for O3 reduction.
文摘The driving factors of runoff changes can be divided into precipitationfactor and non-precipitation factor, and they can also be divided into natural factor and humanactivity factor. In this paper, the ways and methods of these driving factors impacting on runoffchanges are analyzed at first, and then according to the relationship between precipitation andrunoff, the analytical method about impacts of precipitation and non-precipitation factors onbasin's natural runoff is derived. The amount and contribution rates of the two factors impacting onnatural runoff between every two adjacent decades during 1956-1998 are calculated in the YellowRiver Basin (YRB). The results show that the amount and contribution rate of the two factorsimpacting on natural runoff are different in different periods and regions. For the YRB, thenon-precipitation impact is preponderant for natural runoff reduction after the 1970s. Finally, bychoosing main factors impacting on the natural runoff, one error back-propagation (BP) artificialneural network (ANN) model has been set up, and the impact of human activities on natural runoffreduction in the YRB is simulated. The result shows that the human activities could cause a 77 x10^8 m^3·a^(-1) reduction of runoff during 1980-1998 according to the climate background of1956-1979.
基金The National Natural Sciences Foundation of China (No. 50239020)
文摘In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin.
文摘A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 106, an irrigation area of 375.521 km2, a livestock of 0.7732 × 106, and an industrial value added of ¥193.14 × 109 (i.e. about US$28.285 × 109) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFC0505903)College Student Research and Career-creation Program of China(No.201810022070)。
文摘Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem.This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta,China.We calculated the hydrological connectivity based on the hydraulic resistance and graph theory,and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ0‒0.03,Ⅱ0.03‒0.06,Ⅲ0.06‒0.12,Ⅳ0.12‒0.39).The results showed that hydrological connectivity increased in the north shore of the Yellow River and the south tidal flat from 2007 to 2018,which concentrated in the mainstream of the Yellow River and the tidal creek.High hydrological connectivity was maintained in the wetland restoration area.The soil total carbon storage and organic carbon storage significantly increased with increasing hydrological connectivity fromⅠtoⅢgradient and decreased inⅣgradient.The highest soil total carbon storage of 0‒30 cm depth was 5172.34 g/m^(2),and organic carbon storage 2764.31 g/m^(2)inⅢgradient.The hydrological connectivity changed with temporal and spatial change during 2007‒2018 and had a noticeable impact on soil carbon storage in the Yellow River Delta.The results indicated that appropriate hydrological connectivity,i.e.0.08,could effectively promote soil carbon storage.
文摘The weekly water quality monitor data of Liuhai lakes between April 2003 and November 2004 in Beijing City were used as an example to build an artificial neural networks (ANN) model and a multi-varieties regression model respectively for predicting the fresh water algae bloom. The different predicted abilities of the two methods in Liuhai lakes were compared. A principle analysis method was first used to select the input variables of the models to avoid the phenomenon of collinearity in the data. The results showed that the input variables for the artificial neural networks were T, TP, transparency(SD), DO, chlorophyll-a (Chl-a),pH and the output variable was Chl-a. A three layer Levenberg-Marguardt feed forward leaming algorithm in ANN was used to model the eutrophication process of Liuhai lakes. 20 nodes in hidden layer and 1 node of output for the ANN model had been optimized by trial and error method. A sensitivity analysis of the input variables was performed to evaluate their relative significance in determining the predicted values. The correlation coefficient between predicted value and observed value in all data and in test data were 0.717 and 0.816 respectively in the artificial neural networks. The stepwise regression method was used to simulate the linear relation between Chl-a and temperature, of which the correlation coefficient was 0.213. By comparing the results of the two models, it was found that neural network models were able to simulate non-linear behavior in the water eutrophication process of Liuhai lakes reasonably and could successfully estimate some extreme values from calibration and test data sets.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2010CB950904)National Natural Science Foundation of China (No. 70503025,40801231)Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-305-2)
文摘Food safety and its related influencing factors in China are the hot research topics currently,and cultivated land conversion is one of the significant factors influencing food safety in China.Taking the North China Plain as the study area,this paper examines the changes of cultivated land area using satellite images,estimates land productivity from 1985 to 2005 using the model of Estimation System for Land Productivity(ESLP),and analyzes the impact of cultivated land conversion on the land production.Compared with the grain yield data from statistical yearbooks,the results indicate that ESLP model is an effective tool for estimating land productivity.Land productivity in the North China Plain showed a slight decreasing trend from 1985 to 2005,spatially,increased from the north to the south gradu-ally,and the net changes varied in different areas.Cultivated land area recorded a marginal decrease of 8.0 × 105 ha,mainly converted to other land uses.Cultivated land conversion had more significant negative impacts on land produc-tion than land productivity did.Land production decreased by about 6.48 × 106 t caused by cultivated land conversion between 1985 and 2005,accounting for 91.9% of the total land production reduction.Although the land productivity increased in Anhui and Jiangsu provinces,it can not offset the overall adverse effects caused by cultivated land con-version.Therefore,there are significant meanings to control the cultivated land conversion and improve the land pro-ductivity for ensuring the land production in the North China Plain.
基金Under the auspices of the Chinese Academy of Engineering Advisory Project(No.2018-XZ-14-03)Key Project of National Natural Science Foundation of China(No.51639001)National Key Basic Research Program of China(No.2013CB430406)
文摘Land-use changes in coastal wetlands have led to a worldwide degradation of marine coastal ecosystems and a loss of the ecological services they provide. Ecological offsetting is a popular strategy and an effective mitigation measure for ecosystems that have been degraded, damaged, or destroyed and is critical for habitats where natural recovery is hindered. However, the current understanding of the theory and practice of ecological offsetting for coastal wetlands is extremely limited in many developing countries. We conducted a review of ecological offsetting for coastal wetlands projects and studies in China in 1979–2017 to explore the application and limitations of ecological offsetting theory. It was found that China's coastal ecological offsetting regime has recently entered a rapidly developing stage, with an increasing number of different types of offsetting projects conducted, but theoretical research lags behind practical applications. Considerable governmental, social, technological and ethical challenges remain to resolve. Coastal ecological offsetting schemes have been inconsistent in meeting conservation objectives or preventing net losses because of the challenges of ensuring they are fully consistent in practice(mainly in-kind offsets) and theory(mainly out-of-kind offsets). Ecological offsetting projects were primarily implemented by government, developers, and non-profit organizations. The available funding of coastal ecological offsetting projects is insufficient, which makes ecological offsetting a risky operation. Therefore, we propose strategies for improvement that integrate the consideration of theoretical and practical challenges in the offsetting process, while providing a scientific basis and directional guidance for the future practice of biodiversity conservation and environmental management.
基金Under the auspices of the National Key Research and Development Program of China(No.2017YFC0505906)National Natural Science Foundation of China(No.31770576+1 种基金 51639001)Interdiscipline Research Funds of Beijing Normal University
文摘Little information is available on the impacts of coastal reclamation on wetland loss in large-river deltas at a regional scale.Using remote sensing data of coastal wetland and reclamation in four deltas in China from 1978 to 2014, we tracked their continuous area changes in four periods: 1978–1990, 1990–2000, 2000–2008, and 2008–2014. The areal relation between wetland loss and reclamation was quantified and used to identify coastal reclamation mode intensity coupled with another three indicators: reclamation rate,accretion rate and land-use intensity of coastal reclamation. The results showed that coastal reclamation driven by economic development reduced, or even reverse the original growth of delta which was determined by the offset between wetland acceleration rate and wetland loss rate. Generally, the area of reclamation showed a positive linear correlation with the area of wetland loss. The findings imply that human activities should control reclamation rate and intensity to alleviate total wetland loss and maintain wetland ’net gain’.Inappropriate coastal reclamation modes can magnify total wetland loss;therefore, coastal reclamation with a slow increment rate and low impervious surface percent is of great importance for sustainable development in future coastal management.
基金financially supported by National Natural Science Foundation of China(Grant No. 51179006)China National Funds for Distinguished Young Scientists (Grant No.51125035)+2 种基金National Science Foundation for Innovative Research Group (Grant No. 51121003)the Program for New Century Excellent Talents in University (NECT-10-0235)the Fok Ying Tung Foundation (Grant No. 132009)
文摘Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.