W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hy...W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hydrate precursors,but also the reduction property of tungsten oxide transformed from precursors.In this study,the morphology evolution of the samples with and without yttrium during reduction process has been studied,and it is found that the addition of yttrium can exert a strong influence on the reduction route of tungsten oxide and the final morphology of tungsten particles.The cause of the difference of reduction route and tungsten particle morphology is also analyzed.It is suggested that the composition of the samples with yttrium at the beginning of reduction is pure cubic system WO3(c-WO3),and the c-WO3 particles have c-WO3 whiskers attached to the surface.This kind of whiskers is essential for c-WO3 to be reduced directly to tungsten and also helpful to obtain W-Y2O3 powders with small size and good uniformity.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51822404 and 51574178)the Science and Technology Program of Tianjin(No.18YFZCGX00070)+1 种基金the Natural Science Foundation of Tianjin(No.18JCYBJC17900)the Seed Foundation of Tianjin University(Nos.2018XRX-0005 and 2019XYF-0066).
文摘W-Y2O3 composite nanopowders prepared via wet chemical method exhibit unique morphologies and micro structures.The yttrium addition during chemical reaction process affects not only the composition of tungsten acid hydrate precursors,but also the reduction property of tungsten oxide transformed from precursors.In this study,the morphology evolution of the samples with and without yttrium during reduction process has been studied,and it is found that the addition of yttrium can exert a strong influence on the reduction route of tungsten oxide and the final morphology of tungsten particles.The cause of the difference of reduction route and tungsten particle morphology is also analyzed.It is suggested that the composition of the samples with yttrium at the beginning of reduction is pure cubic system WO3(c-WO3),and the c-WO3 particles have c-WO3 whiskers attached to the surface.This kind of whiskers is essential for c-WO3 to be reduced directly to tungsten and also helpful to obtain W-Y2O3 powders with small size and good uniformity.