期刊文献+
共找到3,246篇文章
< 1 2 163 >
每页显示 20 50 100
College English Curriculum Reform in the Context of New Engineering Education:Taking Wuhan University of Technology as an Example
1
作者 WANG Hai-yan SHE Ran-ran 《Journal of Literature and Art Studies》 2024年第4期302-305,共4页
With the introduction of“new engineering,new medical science,new agricultural science,and new liberal arts”construction,the reform of college English teaching is also imperative.Scholars nationwide have conducted at... With the introduction of“new engineering,new medical science,new agricultural science,and new liberal arts”construction,the reform of college English teaching is also imperative.Scholars nationwide have conducted attempts in different aspects of college English teaching and produced fruitful results.Yet,more efforts should be made.This paper discusses the reforms made by Wuhan University of Technology,focusing on the reformation of curriculum. 展开更多
关键词 new engineering construction CURRICULUM specialized purpose courses
下载PDF
Research on Translation of Campus Public Signs in Wuhan University of Technology
2
作者 LI Hui XIANG Qing-ling 《海外英语》 2015年第4期171-173,共3页
Based on Eugene Nida's "dynamic equivalence" translation theory as well as current situations for the translation of campus public signs in Wuhan University of Technology, this paper aimed at investigati... Based on Eugene Nida's "dynamic equivalence" translation theory as well as current situations for the translation of campus public signs in Wuhan University of Technology, this paper aimed at investigating and researching the standard translation methods for campus public signs. Moreover, through the collection and analysis of the current situation about the public signs in the University, this paper also intended to provide an internationally recognized version of translation for campus public signs. Finally, the paper suggests practical ways for the promotion of the translated version in order to realize its application in other universities of China. 展开更多
关键词 CAMPUS PUBLIC SIGNS Dynamic EQUIVALENCE TRANSLATION methods Standardized version
下载PDF
Comparative Analysis of the Factors Influencing Metro Passenger Arrival Volumes in Wuhan, China, and Lagos, Nigeria: An Application of Association Rule Mining and Neural Network Models
3
作者 Bello Muhammad Lawan Jabir Abubakar Shuyang Zhang 《Journal of Transportation Technologies》 2024年第4期607-653,共47页
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac... This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals. 展开更多
关键词 Metro Passenger Arrival volume Influencing Factor Analysis Wuhan and Lagos Metro Neural Network Modeling Association Rule Mining Technique
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
4
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 Atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Engineering Thermoelectric Performance of α-GeTe by Ferroelectric Distortion 被引量:1
5
作者 Yuting Fan Chenghao Xie +5 位作者 Jun Li Xiangyu Meng Jinchang Sun Jinsong Wu Xinfeng Tang Gangjian Tan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期171-179,共9页
The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural ... The rhombohedralα-GeTe can be approximated as a slightly distorted rock-salt structure along its[111]direction and possesses superb thermoelectric performance.However,the role of such a ferroelectric-like structural distortion on its transport properties remains unclear.Herein,we performed a systematic study on the crystal structure and electronic band structure evolutions of Ge_(1-x)Sn_(x)Te alloys where the degree of ferroelectric distortion is continuously tuned.It is revealed that the band gap is maximized while multiple valence bands are converged at x=0.6,where the ferroelectric distortion is the least but still works.Once undistorted,the band gap is considerably reduced,and the valence bands are largely separated again.Moreover,near the ferro-to-paraelectric phase transition Curie temperature,the lattice thermal conductivity reaches its minima because of significant lattice softening enabled by ferroelectric instability.We predict a peak ZT value of 2.6 at 673 K inα-GeTe by use of proper dopants which are powerful in suppressing the excess hole concentrations but meanwhile exert little influence on the ferroelectric distortion. 展开更多
关键词 electronic band structures ferroelectric distortion lattice softening THERMOELECTRIC α-GeTe
下载PDF
Physical,mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant 被引量:1
6
作者 Wenbin Han Yan Zhou +2 位作者 Lixiong Cai Cheng Zhou Lieyun Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1243-1257,共15页
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th... Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases. 展开更多
关键词 Lunar base Lunar regolith simulant Vacuum sintering Physical properties Mechanical properties Thermal properties
下载PDF
Machine Learning-Based Decision-Making Mechanism for Risk Assessment of Cardiovascular Disease 被引量:1
7
作者 Cheng Wang Haoran Zhu Congjun Rao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期691-718,共28页
Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In thi... Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In this paper,a machine learning-based decision-making mechanism for risk assessment of CVD is designed.In this mechanism,the logistics regression analysismethod and factor analysismodel are used to select age,obesity degree,blood pressure,blood fat,blood sugar,smoking status,drinking status,and exercise status as the main pathogenic factors of CVD,and an index systemof risk assessment for CVD is established.Then,a two-stage model combining K-means cluster analysis and random forest(RF)is proposed to evaluate and predict the risk of CVD,and the predicted results are compared with the methods of Bayesian discrimination,K-means cluster analysis and RF.The results show that thepredictioneffect of theproposedtwo-stagemodel is better than that of the comparedmethods.Moreover,several suggestions for the government,the medical industry and the public are provided based on the research results. 展开更多
关键词 CVD influencing factors risk assessment machine learning two-stage model
下载PDF
High photoelectric conversion efficiency and fast relaxation time of FA_(0.4)MA_(0.6)PbI_(3) applied in ultrafast modulation of terahertz waves 被引量:2
8
作者 Zhibo Xu Ying Zeng +5 位作者 Xinran Zhao Xiaoyin Chen Aoyu Fan Furi Ling Jiang Li Jianquan Yao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期299-305,共7页
Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufac... Active control of terahertz(THz)waves is attracting tremendous attentions in terahertz communications and active photonic devices.Perovskite,due to its excellent photoelectric conversion performance and simple manufacturing process,has emerged as a promising candidate for optoelectronic applications.However,the exploration of perovskites in optically controlled THz modulators is still limited.In this work,the photoelectric properties and carrier dynamics of FA_(0.4)MA_(0.6)PbI_(3)perovskite films were investigated by optical pumped terahertz probe(OPTP)system.The ultrafast carrier dynamics reveal that FA_(0.4)MA_(0.6)PbI_(3)thin film exhibits rapid switching and relaxation time within picosecond level,suggesting that FA_(0.4)MA_(0.6)PbI_(3)is an ideal candidate for active THz devices with ultrafast response.Furthermore,as a proof of concept,a FA_(0.4)MA_(0.6)PbI_(3)-based metadevice with integrating plasma-induced transparency(PIT)effect was fabricated to achieve ultrafast modulation of THz wave.The experimental results demonstrated that the switching time of FA_(0.4)MA_(0.6)PbI_(3)-based THz modulator is near to 3.5 ps,and the threshold of optical pump is as low as 12.7μJ cm^(-2).The simulation results attribute the mechanism of ultrafast THz modulation to photo-induced free carriers in the FA_(0.4)MA_(0.6)PbI_(3)layer,which progressively shorten the capacitive gap of PIT resonator.This study not only illuminates the potential of FA_(0.4)MA_(0.6)PbI_(3)in THz modulation,but also contributes to the field of ultrafast photonic devices. 展开更多
关键词 Terahertz modulation Perovskites METAMATERIALS Plasmon-induced transparency
下载PDF
High Permeability in Broadband of Co-sputtered [Fe-Fe_(20)Ni_(80)/Cr]_(n) Multilayer Films 被引量:1
9
作者 罗创钰 LIU Xing +1 位作者 王峰 李维 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期410-416,共7页
To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to f... To achieve high microwave permeability in wide-band for the micron-thick magnetic films,[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer structure was proposed by co-sputtering Fe and FeNi to form the magnetic layers and Cr to form the interlayers.The multilayer structure contributes to the high permeability by reducing the coercivity and diminishing out-of-plane magnetization.The maximum imaginary permeability of[Fe-Fe_(20)Ni_(80)/Cr]_(n) multilayer film reaches a large value of 800 at 0.52 GHz even though its overall thickness exceeds 1μm.Besides,the magnetic resonance frequency of the multilayer film can be modulated from 0.52 to 1.35 GHz by adjusting the sputtering power of Fe from 0 to 86 W,and its bandwidth for μ’’>200(Δf) is as large as 2.0 GHz.The desirable broad Δf of magnetic permeability,which can be well fitted by the Landau-Lifshitz-Gilbert equations,is due to dual magnetic resonances originated from double magnetic phases of Fe and FeNi that are of different saturation magnetization.The micron-thick multilayer films with high permeability in extended waveband are promising candidate for electromagnetic noise suppression application. 展开更多
关键词 magnetron sputtering multiple magnetic resonance high permeability electromagnetic noise suppression
下载PDF
Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism 被引量:1
10
作者 Liuyi Ren Bo Liu +5 位作者 Shenxu Bao Wei Ding Yimin Zhang Xiaochuan Hou Chao Lin Bo Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期518-530,共13页
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs... The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process. 展开更多
关键词 spent lithium-ion batteries LEACHING response surface methodology sulfuric acid citric acid
下载PDF
Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin NiCo-LDH Nanosheets Bifunctional Flexible Supercapacitor Electrodes 被引量:1
11
作者 Kwadwo Asare Owusu Zhaoyang Wang +7 位作者 Ali Saad Felix Ofori Boakye Muhammad Asim Mushtaq Muhammad Tahir Ghulam Yasin Dongqing Liu Zhengchun Peng Xingke Cai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期277-286,共10页
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ... Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials. 展开更多
关键词 amorphous nanosheets aqueous supercapacitor high volumetric/areal energy density NiCo-LDH room temperature synthesis
下载PDF
Rational design and synthesis of Cr_(1-x)Te/Ag_(2)Te composites for solid-state thermoelectromagnetic cooling near room temperature
12
作者 孙笑晨 谢承昊 +3 位作者 陈思汗 万京伟 谭刚健 唐新峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期580-586,共7页
Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single pha... Materials with both large magnetocaloric response and high thermoelectric performance are of vital importance for all-solid-state thermoelectromagnetic cooling.These two properties,however,hardly coexist in single phase materials except previously reported hexagonal Cr_(1-x)Te half metal where a relatively high magnetic entropy change(-△S_(M))of~2.4 J·kg^(-1)·K^(-1)@5 T and a moderate thermoelectric figure of merit(ZT)of~1.2×10^(-2)@300 K are simultaneously recorded.Herein we aim to increase the thermoelectric performance of Cr_(1-x)Te by compositing with semiconducting Ag_(2)Te.It is discovered that the in-situ synthesis of Cr_(1-x)Te/Ag_(2)Te composites by reacting their constitute elements above melting temperatures is unsuccessful because of strong phase competition.Specifically,at elevated temperatures(T>800 K),Cr_(1-x)Te has a much lower deformation energy than Ag_(2)Te and tends to become more Cr-deficient by capturing Te from Ag_(2)Te.Therefore,Ag is insufficiently reacted and as a metal it deteriorates ZT.We then rationalize the synthesis of Cr_(1-x)Te/Ag_(2)Te composites by ex-situ mix of the pre-prepared Cr_(1-x)Te and Ag_(2)Te binary compounds followed by densification at a low sintering temperature of 573 K under a pressure of 3.5 GPa.We show that by compositing with 7 mol%Ag_(2)Te,the Seebeck coefficient of Cr_(1-x)Te is largely increased while the lattice thermal conductivity is considerably reduced,leading to 72%improvement of ZT.By comparison,-△S_(M)is only slightly reduced by 10%in the composite.Our work demonstrates the potential of Cr_(1-x)Te/Ag_(2)Te composites for thermoelectromagnetic cooling. 展开更多
关键词 thermoelectromagnetic cooling thermoelectric MAGNETOCALORIC composite chromium telluride
下载PDF
Co-pyrolysis of Sewage Sludge with Distillation Residue: Kinetics Analysis via Iso-conversional Methods
13
作者 ZHOU Shangqun ZHAO Qinglin +1 位作者 YU Tian YAO Xiaojie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1188-1198,共11页
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy... This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste. 展开更多
关键词 sewage sludge CO-PYROLYSIS distillation residue KINETICS evolved gas analysis
下载PDF
Effect of Deposition Temperature on Optical Properties of Porous Amorphous SiC Film
14
作者 徐吉祥 TAO Weijie +3 位作者 LIU Canhui XU Haoyao LI Lixuan 贺振华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期839-844,共6页
To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si su... To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si substrate by chemical method,and then a layer of SiC was deposited on anodic aluminum oxide(AAO)template to prepare porous fluorescent SiC film by magnetron sputtering.The deposition temperature was ranged from 373 to 873 K.The thickness of the porous SiC film coated on the AAO surface was around 283 nm.It is found that the porous SiC with the deposition temperature of 873 K has the strongest photoluminescence(PL)intensity excited by 375 nm laser.The time-resolved PL spectra prove that the PL is mainly from intrinsic light emitting of SiC.With the optimized process,porous amorphous SiC film may have potential applications in the field of warm white LEDs. 展开更多
关键词 porous SiC film fluorescent SiC anodic aluminum oxide magnetron sputtering time-resolved spectrum
下载PDF
Three‑dimensional numerical simulation of dynamic strength and failure mode of a rock mass with cross joints
15
作者 Tingting Liu Wenxu Huang +3 位作者 Chang Xiang Qian Dong Xinping Li Chao Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期35-52,共18页
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence... To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions. 展开更多
关键词 Cross joints Joint distribution form Dynamic failure characteristics FEM–DEM BHPB
下载PDF
Investigating impacts of different building contents on the post-earthquake evacuation time using an agent-based model with considering turning behavior
16
作者 Bao Yu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期939-955,共17页
Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-struct... Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time. 展开更多
关键词 seismic fragility EVACUATION agent-based model route choice built environment
下载PDF
Using Electrodeposition of Carboxylated Chitosan for Green Preparation of Copper Nanoclusters and Nanocomposite Films
17
作者 ZHANG Xiaoli LI Tingxue +4 位作者 WANG Qinghua YANG Yan ZHANG Chenyu LIU Yaning WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1348-1357,共10页
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ... On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices. 展开更多
关键词 nanocomposite films copper nanoclusters ELECTRODEPOSITION carboxylated chitosan POLYSACCHARIDES
下载PDF
The Influence of Limestone Powder and Metakaolin Co-Blending on the Hydration Process and Mechanical Properties of Q-Phase Cement
18
作者 XIONG Xuan HE Yongjia +2 位作者 LÜLinnü MA Jie WANG Fazhou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1169-1176,共8页
A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated ... A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications. 展开更多
关键词 Q-phase LIMESTONE METAKAOLIN HYDRATION compressive strength
下载PDF
Microstructure Regulation and Combustion Performance Optimization of PVDF/Al Composite Powder by Non-covalent Functionalized Graphenes
19
作者 易卓然 DENG Haoyuan +2 位作者 QIN Mei 孙一 LUO Guoqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期904-911,共8页
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the... Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state. 展开更多
关键词 energetic materials PVDF/Al composites graphene modification energy release combustion
下载PDF
In-situ defect passivation assisted three-step printing of efficient and stable formamidine-lead bromide solar cells
20
作者 Hang Yang Tao Zhou +6 位作者 Haoyu Cai Wenjian Shen Hao Chen Yongjun Liu Juan Zhao Yi-Bing Cheng Jie Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期396-405,共10页
Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSC... Perovskite solar cells(PSCs)emerge as the most promising photovoltaics(PV)for their high performance and potential convenient cost-effective production routes comparing to the sophomore PV technologies.The printed PSCs with simplified device architecture and fabrication procedures could further enhance the competitive strength of PSC technology.In this work,we present an in-situ defect passivation(ISDP)assisted full-printing of high performance formamidine-lead bromide(FAPbBr_(3))PSCs.Only three rapid printing steps are involved for electron transporting layer(ETL),perovskite and carbon to form a complete solar cell on the low-cost fluorine-doped tin oxide(FTO)substrate.Long-chain polymer monomethyl ether polyethylene glycol is particularly utilized as the ISDP passivator,leading to conformal coating on the rough FTO and defect passivation for both ETL and perovskite during printing.A high efficiency of 10.85%(certified 10.14%)and a high V_(oc)up to 1.57 V are achieved for the printed device.The unencapsulated PSCs maintain above 90%of the initial efficiency after continuously heating at 85℃for 1000 h and over 80%of the efficiency after the maximum power point tracking for 3500 h.The fully printed semitransparent PSCs with carbon grids(CGs)show average visible light transmittance over 33%and an efficiency of 8.81%. 展开更多
关键词 Formamidinium lead bromide Fully printed Lowcosts Carbon electrode SEMITRANSPARENT
下载PDF
上一页 1 2 163 下一页 到第
使用帮助 返回顶部