背景:对于载脂蛋白与传统脂质测量指标预测冠心病(coronaryheartdisease,CHD)危险的性能,目前有关证据尚有矛盾。
目的:采用鉴别和标准化特征(discrimination and calibration characteristics)以及危险再分类对不同脂质测量...背景:对于载脂蛋白与传统脂质测量指标预测冠心病(coronaryheartdisease,CHD)危险的性能,目前有关证据尚有矛盾。
目的:采用鉴别和标准化特征(discrimination and calibration characteristics)以及危险再分类对不同脂质测量指标预测CHD的性能进行比较;评估载脂蛋白预测CHD的效果是否优于传统的脂质指标。设计、地点及参试者:以人群为基础的前瞻性队列来自FraminghaiR,Massachusetts。我们评估了血清总胆固醇、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、non-HDL-C、载脂蛋白(apo)A-I和apoB以及三种脂质比值(总胆固醇:HDL-C,LDL-c:HDL-C以及apoB:apoA-I)。332例中年白人参试者均参加了第4次后代检查(1987~1991年),没有心血管病。53%的参试者为女性。主要观测指标:首次CHD事件(已确诊或未确诊之心肌梗死、心绞痛、冠状动脉不全或冠心病死亡)。结果:在中位随访15年后,291例参试者(198例男性)发生CHD。在校正非脂质危险因素的多变量模型中,apoB:apoA-I比值可预测CHD(在男性每增加1个sD的风险比[hazardratio,HR],1.39;95%可信区间[CI],1.23~1.58。女性HR,1.40;95%,CI,1.16~1.67),但是其危险比与总胆固醇:HDL—C(男性HR,1.39;95%CI,1.22~1.58。女性HR,1.39;95%CI,1.17~1.66)、LDL—C:HDL—C(男性HR,1.35;95%CI,1.18~1.54。女性HR,1.36;95%CI,1.14~1.63)相似。在男性及女性,使用apoB:apoA—I比值的模型证实其操作特征与其他脂质相似但不优于其他脂质比值。apoB::apoA—I比值在包含所有Framinghan危险评分因子的模型,包括总胆固醇:HDL—C(男性、P=0.12;女性P=0.58),不能预测CHR危险。
结论:在这个大型人群队列,apoB:apoA-I比值预测CHD的性能与传统的脂质比值相近,但并不优于总胆固醇:HDL-C比值。在已有总胆固醇及HDL-C测量结果的条:件下,这些数据并不支持apoB或apoA-I的临床应用。展开更多
Cross-sectional visualisation of the cellular and subcellular structures of human atherosclerosis in vivo is significant,as this disease is fundamentally caused by abnormal processes that occur at this scale in a dept...Cross-sectional visualisation of the cellular and subcellular structures of human atherosclerosis in vivo is significant,as this disease is fundamentally caused by abnormal processes that occur at this scale in a depth-dependent manner.However,due to the inherent resolution-depth of focus tradeoff of conventional focusing optics,today’s highestresolution intravascular imaging technique,namely,optical coherence tomography(OCT),is unable to provide crosssectional images at this resolution through a coronary catheter.Here,we introduce an intravascular imaging system and catheter based on few-mode interferometry,which overcomes the depth of focus limitation of conventional highnumerical-aperture objectives and enables three-dimensional cellular-resolution intravascular imaging in vivo by a submillimetre diameter,flexible catheter.Images of diseased cadaver human coronary arteries and living rabbit arteries were acquired with this device,showing clearly resolved cellular and subcellular structures within the artery wall,such as individual crystals,smooth muscle cells,and inflammatory cells.The capability of this technology to enable cellularresolution,cross-sectional intravascular imaging will make it possible to study and diagnose human coronary disease with much greater precision in the future.展开更多
基金funded by National Institutes of Health(NIH)grants R01HL076398,R01HL122388,R01HL137913John and Dottie Remondi Family Foundation+1 种基金the Mike and Sue Hazard Family Foundationthe MGH Research Scholars programme.
文摘Cross-sectional visualisation of the cellular and subcellular structures of human atherosclerosis in vivo is significant,as this disease is fundamentally caused by abnormal processes that occur at this scale in a depth-dependent manner.However,due to the inherent resolution-depth of focus tradeoff of conventional focusing optics,today’s highestresolution intravascular imaging technique,namely,optical coherence tomography(OCT),is unable to provide crosssectional images at this resolution through a coronary catheter.Here,we introduce an intravascular imaging system and catheter based on few-mode interferometry,which overcomes the depth of focus limitation of conventional highnumerical-aperture objectives and enables three-dimensional cellular-resolution intravascular imaging in vivo by a submillimetre diameter,flexible catheter.Images of diseased cadaver human coronary arteries and living rabbit arteries were acquired with this device,showing clearly resolved cellular and subcellular structures within the artery wall,such as individual crystals,smooth muscle cells,and inflammatory cells.The capability of this technology to enable cellularresolution,cross-sectional intravascular imaging will make it possible to study and diagnose human coronary disease with much greater precision in the future.