In an attempt to develop low-cost,non-noble-metal bifunctional electrocatalysts for water electrolysis in alkaline media,cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes were fabricated by using C3N...In an attempt to develop low-cost,non-noble-metal bifunctional electrocatalysts for water electrolysis in alkaline media,cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes were fabricated by using C3N4 as the carbon source on a 3D porous nickel foam substrate.Benefiting from the optimized electronic structure and enhanced mass and charge transport,as well as the 3D conducting pathway,MoxCoy@N-CNSs/CNTs shows superior performance towards both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in an alkaline medium.The optimal electrocatalyst is Mo2Co1@N-CNSs/CNTs,which reveals a current density of 10 mA cm^-2 at the low overpotentials of 99 mV and 300 mV for the HER and OER,respectively,and a relatively low cell voltage(1.63 V)for the overall water electrolysis.The method of optimizing the composition and nanostructure of a material provides a new avenue for the development and utilization of high-performance electrocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(51622102,51571124,21421001)the 111 Project(B12015)+1 种基金the Natural Science Foundation of Tianjin(18ZXJMTG00040,16PTSYJC00030)the Fundamental Research Funds for the Central Universities~~
文摘In an attempt to develop low-cost,non-noble-metal bifunctional electrocatalysts for water electrolysis in alkaline media,cobalt-doped molybdenum carbide@N-doped carbon nanosheets/nanotubes were fabricated by using C3N4 as the carbon source on a 3D porous nickel foam substrate.Benefiting from the optimized electronic structure and enhanced mass and charge transport,as well as the 3D conducting pathway,MoxCoy@N-CNSs/CNTs shows superior performance towards both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in an alkaline medium.The optimal electrocatalyst is Mo2Co1@N-CNSs/CNTs,which reveals a current density of 10 mA cm^-2 at the low overpotentials of 99 mV and 300 mV for the HER and OER,respectively,and a relatively low cell voltage(1.63 V)for the overall water electrolysis.The method of optimizing the composition and nanostructure of a material provides a new avenue for the development and utilization of high-performance electrocatalysts.