To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and inter...To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and interfacial bonding.By pressure infiltration of the molten alloy into the freeze-cast porous ceramic skeleton,the 2024Al/B_(4)C-TiB_(2)composites with a laminate-reticular hierarchical structure were produced.Compared with 2024Al/B_(4)C composite,adding initial TiH_(2)improved the flexural strength and valid fracture toughness from(484±27)to(665±30)MPa and(19.3±1.5)to(32.7±1.8)MPa·m^(1/2),respectively.This exceptional damage resistance ability was derived from multiple extrinsic toughening mechanisms including uncracked-ligament bridging,crack branching,crack propagation and crack blunting,and more importantly,the fracture model transition from single to multiple crack propagation.This strategy opens a pathway for improving the wettability and interfacial bonding of Al/B_(4)C composites,and thus produces nacre-inspired materials with optimized damage tolerance.展开更多
The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its per...The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its performance.However,its mechanism and active sites remain unclear and need to be further elucidated.Here,the noble‐metal‐free In_(x)‐Co_(y) oxides catalysts were prepared.Much‐improved performance and obvious product selectivity shift were observed.The optimized catalyst(In_(1)‐Co_(4))(9.7 mmol g_(cat)^(–1) h^(–1))showed five times methanol yields than pure In_(2)O_(3)(2.2 mmol g_(cat)^(–1) h^(–1))(P=4.0 MPa,T=300°C,GHSV=24000 cm^(3)_(STP) g_(cat)^(–1) h^(–1),H_(2):CO_(2)=3).And the cobalt‐catalyzed CO_(2) methanation activity was suppressed,although cobalt was most of the metal element.To unravel this selectivity shift,detailed catalysts performance evaluation,together with several in‐situ and ex‐situ characterizations,were employed on cobalt and In‐Co for comparative study.The results indicated CO_(2) hydrogenation on cobalt and In‐Co catalyst both followed the formate pathway,and In‐Co reconstructed and generated a surface In_(2)O_(3)‐enriched core‐shell‐like structure under a reductive atmosphere.The enriched In_(2)O_(3) at the surface significantly enhanced CO_(2) adsorption capacity and well stabilized the intermediates of CO_(2) hydrogenation.CO_(2) and carbon‐containing intermediates adsorbed much stronger on In‐Co than cobalt led to a feasible surface C/H ratio,thus allowing the*CH_(3)O to desorb to produce CH_(3)OH instead of being over‐hydrogenated to CH_(4).展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51502053,52072091,51621091)Heilongjiang Touyan Team,China。
文摘To address the issue that B_(4)C ceramics are difficult to be wetted by aluminum metals in the composites,TiB_(2)was introduced via an in-situ reaction between TiH_(2)and B_(4)C to regulate their wettability and interfacial bonding.By pressure infiltration of the molten alloy into the freeze-cast porous ceramic skeleton,the 2024Al/B_(4)C-TiB_(2)composites with a laminate-reticular hierarchical structure were produced.Compared with 2024Al/B_(4)C composite,adding initial TiH_(2)improved the flexural strength and valid fracture toughness from(484±27)to(665±30)MPa and(19.3±1.5)to(32.7±1.8)MPa·m^(1/2),respectively.This exceptional damage resistance ability was derived from multiple extrinsic toughening mechanisms including uncracked-ligament bridging,crack branching,crack propagation and crack blunting,and more importantly,the fracture model transition from single to multiple crack propagation.This strategy opens a pathway for improving the wettability and interfacial bonding of Al/B_(4)C composites,and thus produces nacre-inspired materials with optimized damage tolerance.
文摘The hydrogenation of CO_(2) into methanol has attracted much attention and In_(2)O_(3) is a promising catalyst.Introducing metal elements into In_(2)O_(3)(M/In_(2)O_(3))is one of the main strategies to improve its performance.However,its mechanism and active sites remain unclear and need to be further elucidated.Here,the noble‐metal‐free In_(x)‐Co_(y) oxides catalysts were prepared.Much‐improved performance and obvious product selectivity shift were observed.The optimized catalyst(In_(1)‐Co_(4))(9.7 mmol g_(cat)^(–1) h^(–1))showed five times methanol yields than pure In_(2)O_(3)(2.2 mmol g_(cat)^(–1) h^(–1))(P=4.0 MPa,T=300°C,GHSV=24000 cm^(3)_(STP) g_(cat)^(–1) h^(–1),H_(2):CO_(2)=3).And the cobalt‐catalyzed CO_(2) methanation activity was suppressed,although cobalt was most of the metal element.To unravel this selectivity shift,detailed catalysts performance evaluation,together with several in‐situ and ex‐situ characterizations,were employed on cobalt and In‐Co for comparative study.The results indicated CO_(2) hydrogenation on cobalt and In‐Co catalyst both followed the formate pathway,and In‐Co reconstructed and generated a surface In_(2)O_(3)‐enriched core‐shell‐like structure under a reductive atmosphere.The enriched In_(2)O_(3) at the surface significantly enhanced CO_(2) adsorption capacity and well stabilized the intermediates of CO_(2) hydrogenation.CO_(2) and carbon‐containing intermediates adsorbed much stronger on In‐Co than cobalt led to a feasible surface C/H ratio,thus allowing the*CH_(3)O to desorb to produce CH_(3)OH instead of being over‐hydrogenated to CH_(4).