Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their for...Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.展开更多
This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various manag...This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.展开更多
This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into...This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into those who had spent time abroad in an English-speaking country(CM A)and those who had not(CM NA),and 97 Hong Kong students,divided into those from an English-medium secondary school(Hong Kong EMI)and those from a Chinese-medium school(Hong Kong CMI).Linguistic proficiency was measured by a C-test,and pragmatic competence by a Metapragmatic Knowledge Test,an Irony Test and a Monologic Role Play.Group scores were compared using ANCOVAs to control for differences in proficiency.The results point to a continuum of pragmatic competence—EMI>CMI>CM A>CM NA—reflecting the groups’access to English in real-life contexts.The differences between the Hong Kong groups and the Chinese mainland groups were clearest in those tests measuring processing capacity(i.e.,Irony Response Time and the Monologic Role Play).CM A,but not CM NA,performed as well as the Hong Kong groups on measures of metapragmatic awareness.The results are discussed in terms of Bialystok’s(1993)distinction between analyzed representation and control of processing.展开更多
Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ...Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.展开更多
Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated ele...Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated electron-hole recombination rates of TiO2-based photocatalysts.Here,a graphene-modified WO3/TiO2 step-scheme heterojunction(S-scheme heterojunction)composite photocatalyst was fabricated by a facile one-step hydrothermal method.In the ternary composite,TiO2 and WO3 nanoparticles adhered closely to reduced graphene oxide(rGO)and formed a novel S-scheme heterojunction.Moreover,rGO in the composite not only supplied abundant adsorption and catalytically active sites as an ideal support but also promoted electron separation and transfer from the conduction band of TiO2 by forming a Schottky junction between TiO2 and rGO.The positive cooperative effect of the S-scheme heterojunction formed between WO3 and TiO2 and the Schottky heterojunction formed between TiO2 and graphene sheets suppressed the recombination of relatively useful electrons and holes.This effect also enhanced the light harvesting and promoted the reduction reaction at the active sites.Thus,the novel ternary WO3/TiO2/rGO composite demonstrated a remarkably enhanced photocatalytic H2 evolution rate of 245.8μmol g^-1 h^-1,which was approximately 3.5-fold that of pure TiO2.This work not only presents a low-cost graphene-based S-scheme heterojunction photocatalyst that was obtained via a feasible one-step hydrothermal approach to realize highly efficient H2 generation without using noble metals,but also provides new insights into the design of novel heterojunction photocatalysts.展开更多
Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combi...Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combining these carbon-involved photocatalytic oxidation-reduction processes together,by which an artificial photocatalytic carbon cycling process can be established.The key challenge lies in the exploitation of efficient bifunctional photocatalysts,capable of triggering both aerobic oxidation and anaerobic reduction reactions.In this work,a bifunctional ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst is successfully constructed,which not only demonstrates superior aerobic photocatalytic oxidation performance in degrading an organic pollutant(using the dye,Rhodamine B as a model),but also exhibits impressive photocatalytic CO2 reduction performance under anaerobic conditions.Moreover,a direct conversion of Rhodamine B to solar fuels in a one-pot anaerobic reactor can be achieved with the as-prepared ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst.The excellent bifunctional photocatalytic performance of the g-C3N4/Bi/BiVO4 photocatalyst is associated with the formation of efficient S-scheme hybrid junctions,which contribute to promoting the appropriate charge dynamics,and sustaining favorable charge potentials.The formation of the S-scheme heterojunction is supported by scavenger studies and density functional theory calculations.Moreover,the in-situ formed plasmonic metallic Bi nanoparticles in the S-scheme hybrid g-C3N4/Bi/BiVO4 photocatalyst enhances vectorial interfacial electron transfer.This novel bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalyst system provides new insights for the further development of an integrated aerobic-anaerobic reaction system for photocatalytic carbon cycling.展开更多
TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the...TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.展开更多
Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facil...Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.展开更多
H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water split...H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.展开更多
A novel p‐n heterostructure photocatalyst m‐Bi2O4/BiOCl was successfully synthetized through a facile ion‐etching method.Via adjusting the added volume of HCl solution,a series of different ratios of composite phot...A novel p‐n heterostructure photocatalyst m‐Bi2O4/BiOCl was successfully synthetized through a facile ion‐etching method.Via adjusting the added volume of HCl solution,a series of different ratios of composite photocatalysts were obtained.The as‐prepared samples of physical,chemical and optical characteristics were examined by X‐ray diffraction,scanning electron microscope,transmission electron microscope,energy dispersive X‐ray spectroscopy,selected‐area electron diffraction,Fourier transform infrared absorption,Raman microscope,N2 adsorption‐desorption,X‐ray photoelectron spectroscopy and UV‐vis spectrum technologies.The photocatalysts showed high degradation rate and complete mineralization ability for methyl orange and tetracycline solution under visible light.The reaction rate constant of m‐Bi2O4/BiOCl for methyl orange was 52.28 times higher than that of BiOCl.The characterization presented a good stability of materials.Furthermore,the photocurrent response test certified that the heterostructure effectively accelerated the separation and migration of photo‐generated carries.The scavenger experiments evidenced that hole(h+)and superoxide radical(?O2?)were the primary active radicals.A possible photocatalytic mechanism was proposed.This work provided an alternative photocatalyst applied to water environmental remediation.展开更多
Surface defect modulation has emerged as a potential strategy for promoting the photocatalytic activity of photocatalysts for various applications, while the impact of the oxygen vacancy on bacterial inactivation is s...Surface defect modulation has emerged as a potential strategy for promoting the photocatalytic activity of photocatalysts for various applications, while the impact of the oxygen vacancy on bacterial inactivation is still debated. In this study, oxygen vacancies were introduced to tungsten trioxide nanosheets(WO3–x) via a microwave-assisted route. The as-prepared WO3–x nanosheets exhibited excellent visible-light-driven photocatalytic activity toward E. coli K-12 inactivation, and 6 log orders of the bacterial cells could be completely inactivated within 150 min. The obtained bacterial inactivation rate constant was 15.2 times higher than that of pristine WO3 without oxygen vacancies, suggesting that the surface oxygen vacancy could significantly promote the bacterial inactivation efficiency. The mechanism study indicated that the inactivation of bacterial cells occurs via a direct h+ oxidation pathway. In addition, the role of the oxygen vacancy was studied in detail;the oxygen vacancy was found to not only promote interfacial charge separation but also tune the band structure of WO3, thereby leading to increased h+ oxidation power. Finally, a possible oxygen vacancy-dominated photocatalytic bacterial inactivation mechanism is proposed. This work is expected to offer new insights into the microwave-assisted synthesis of defective photocatalysts and the use of the oxygen vacancy for promoting photocatalytic antibacterial activities.展开更多
Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in a...Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.展开更多
The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts...The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.展开更多
Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Hetero...Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Heteroatom modification is one of the most effective strategies for boosting catalytic performance,as it can regulate the physicochemical properties of host catalysts to improve their intrinsic activity.Herein,aiming to provide an overview of the impact of heteroatoms on catalytic activity at the atomic level,we present a review of the key role of heteroatoms in enhancing reaction kinetics based on the reaction pathways of the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline media.In particular,the introduction of heteroatoms can directly and indirectly optimize the interactions between the active sites and intermediates,thus improving the intrinsic activity.To clearly illustrate this influence in detail,we have summarized a series of representative heteroatom-modified electrocatalysts and discussed the important roles of heteroatoms in the OER and HER reaction pathways.Finally,some challenges and perspectives for heteroatom-modified electrodes are discussed.We hope that this review will be helpful for the development of efficient and low-cost electrocatalysts for water electrolysis and other energy conversion applications.展开更多
The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fa...The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fabricated by a facile vapothermal-assisted topochemical transformation of preformed H-titanate nanobelts.The vapothermal temperature is crucial in tuning the microstructures and photocatalytic redox properties of the resulting mesoporous TiO2 nanofibers.The microstructures were characterized with XRD,TEM,XPS and nitrogen adsorption-desorption isotherms,etc.The photocatalytic activities were evaluated by photocatalytic oxidation of organic pollutant(Rhodamine B as an example)as well as photocatalytic reduction of water to generate hydrogen(H2).The nanofibers vapothermally treated at 150°C showed the highest photocatalytic activity in both oxidation and reduction reactions,2 times higher than that of P25.The oriented alignment and suitable mesoporosity in the resulting nanofiber architecture were crucial for enhancing photocatalytic performances.The oriented alignment of anisotropic anatase nanocrystals shall facilitate faster vectorial charge transportation along the nanofibers architecture.And,the suitable mesoporosity and high surface area would also effectively enhance the mass exchange during photocatalytic reactions.We also demonstrate that efficient energy-recovering photocatalytic water treatments could be accomplished by a cascading oxic-anoxic process where the dye is degraded in the oxic phase and hydrogen is generated in the successive anoxic phase.This study showcases a novel and facile method to fabricate mesoporous TiO2 nanofibers with high photocatalytic activity for both clean energy production and environmental purification.展开更多
Bismuth‐based photocatalysts are a class of excellent visible‐light photocatalysts;however,their redox activity is relatively poor and the efficiency of photogenerated carrier separation is low,limiting their develo...Bismuth‐based photocatalysts are a class of excellent visible‐light photocatalysts;however,their redox activity is relatively poor and the efficiency of photogenerated carrier separation is low,limiting their development and application in the field of photocatalysis.To address these issues,a series of polyoxometalate PW_(12)O_(40)^(3–)‐doped Bi_(2)O_(3–x)/Bi Schottky photocatalysts PW_(12)@Bi_(2)O_(3–x)/Bi‐n(PBOB‐n,where n is the amount of NaBH4,i.e.,6,12,18,24,and 48 mg)were prepared by a simple electrospinning/calcination/in‐situ NaBH4 reduction method.In this composite photocatalyst,the doping of PW_(12) could effectively adjust the electronic structure of Bi_(2)O_(3–x) and improve its redox properties.As a shallow electron trap,PW_(12) promoted the separation of the photogenerated carriers.Furthermore,desirable Schottky junction between the metal Bi nanoparticles and PW_(12)@Bi_(2)O_(3–x) further accelerated the separation of the photogenerated carriers.The synergistic effect of the aforementioned factors endowed PBOB‐n with excellent photocatalytic activity.Among the samples,PBOB‐18 exhibited superior photocatalytic activity.Under visible‐light irradiation,93.7%(20 mg catalyst)of 20 ppm tetrabromobisphenol A(TBBPA,20 mL)was degraded in 60 min.Its activity was 4.4 times higher than that of Bi_(2)O_(3).PBOB‐18 also exhibited an ultrahigh photocatalytic performance for the removal of NO.Its removal rate(600 ppb)reached 83.3%in 30 min,making it one of the most active Bi‐based photocatalysts.Furthermore,the photocatalytic mechanisms of PBOB‐18 for TBBPA and NO have been proposed.This work provides a new direction and reference for the design of low‐cost,efficient,stable,and versatile photocatalysts.展开更多
To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective...To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.展开更多
A synergistic UV/TiO2/Fenton(PCF)process is investigated for the degradation of ibuprofen(IBP)at circumneutral pH.The IBP decay in the PCF process is much faster than that with the conventional UV,UV/H2O2,Fenton,photo...A synergistic UV/TiO2/Fenton(PCF)process is investigated for the degradation of ibuprofen(IBP)at circumneutral pH.The IBP decay in the PCF process is much faster than that with the conventional UV,UV/H2O2,Fenton,photo‐Fenton,and photocatalysis processes.The kinetics analysis showed that the IBP decay follows a two‐stage pseudo‐first order profile,that is,a fast IBP decay(k1)followed by a slow decay(k2).The effects of various parameters,including initial pH level,dosage of Fenton’s reagent and TiO2,wavelength of UV irradiation,and initial IBP concentration,are evaluated.The optimum pH level,[Fe2+]0,[Fe2+]0/[H2O2]0 molar ratio,and[TiO2]0 are determined to be approximately 4.22,0.20 mmol/L,1/40,and 1.0 g/L,respectively.The IBP decay at circumneutral pH(i.e.,6.0–8.0 for wastewater)shows the same IBP decay efficiency as that at the optimum pH of 4.22 after 30 min,which suggests that the PCF process is applicable for the treatment of wastewater in the circumneutral pH range.The lnk1 and lnk2 are observed to be linearly correlated to 1/pH0,[IBP]0,[H2O2]0,[H2O2]0/[Fe2+]0 and ln[TiO2]0.Mathematical models are therefore derived to predict the IBP decay.展开更多
The widespread utilization of fossil fuels has caused an associated increase in CO_(2) emissions over the past few decades,which has resulted in global warming and ocean acidification.CO hydrogenation(Fischer‐Tropsch...The widespread utilization of fossil fuels has caused an associated increase in CO_(2) emissions over the past few decades,which has resulted in global warming and ocean acidification.CO hydrogenation(Fischer‐Tropsch synthesis,FTS)is considered a significant route for the production of liquid fuels and chemicals from nonpetroleum sources to meet worldwide demand.Conversion of CO_(2) with renewable H_(2) into valuable hydrocarbons is beneficial for reducing dependence on fossil fuels and mitigating the negative effects of high CO_(2) concentrations in the atmosphere.Iron‐based catalysts exhibit superior catalytic performance in both FTS and CO_(2) hydrogenation to value‐added hydrocarbons.The abundance and low cost of iron‐based catalysts also promote their wide application in CO_(x) hydrogenation.This paper provides a comprehensive overview of the significant developments in the application of iron‐based catalysts in these two fields.The active phases,promoter effect,and support of iron‐based catalysts are discussed in the present paper.Based on understanding of these three essential aspects,we also cover recent advances in the design and preparation of novel iron‐based catalysts for FTS and CO_(2) hydrogenation.Current challenges and future catalytic applications are also outlined.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Fundamental Research Funds for the Central Universities(WK2080000144)。
文摘Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.
基金Research Grants Council of the Hong Kong Special Administrative Region,China(U15239024)。
文摘This paper examines project⁃based policies and regulations implemented globally to control and mitigate emissions from diesel⁃powered construction equipment.This study systematically reviews and analyzes various managerial,regulatory,and technical measures adopted across countries and regions,mostly of advanced economy.Key strategies of control include setting emission thresholds,idling restrictions,perform remote online monitoring,operational time limits,setting low emission zones,and enforced registration systems.The review highlights the rationale,implementation details,and experiences gained from these localized approaches,reduces localized emission sources,improve urban air quality and environmental management efficiency.
文摘This study investigates the differences in pragmatic competence between Hong Kong and Chinese mainland university students.Participants included 19 native speakers of English,115 Chinese mainland students,divided into those who had spent time abroad in an English-speaking country(CM A)and those who had not(CM NA),and 97 Hong Kong students,divided into those from an English-medium secondary school(Hong Kong EMI)and those from a Chinese-medium school(Hong Kong CMI).Linguistic proficiency was measured by a C-test,and pragmatic competence by a Metapragmatic Knowledge Test,an Irony Test and a Monologic Role Play.Group scores were compared using ANCOVAs to control for differences in proficiency.The results point to a continuum of pragmatic competence—EMI>CMI>CM A>CM NA—reflecting the groups’access to English in real-life contexts.The differences between the Hong Kong groups and the Chinese mainland groups were clearest in those tests measuring processing capacity(i.e.,Irony Response Time and the Monologic Role Play).CM A,but not CM NA,performed as well as the Hong Kong groups on measures of metapragmatic awareness.The results are discussed in terms of Bialystok’s(1993)distinction between analyzed representation and control of processing.
文摘Background,aim,and scope Environmentally persistent free radicals(EPFRs)have received significant attention due to their longer lifetime and stable existence in various environments.The strong environmental migration ability of particulate matter allows EPFRs to migrate over long-distance transport,thereby impacting the quality of the local atmospheric environment.Additionally,EPFRs can also adhere to atmospheric particles and interact with typical gaseous pollutants to affect atmospheric chemical reactions.EPFRs can produce some reactive organic species,promoting oxidative stress in the human body,damaging biological macromolecules and ultimately affecting the organism health.EPFRs are considered as a novel type of pollutant that affects human health.Despite their significance,there are few literatures available on the characteristics and fate behaviors of EPFRs up to date.Therefore,supplemental reviews are crucial for providing comprehensive understanding of EPFRs.Materials and methods This review summarizes the characteristics of EPFRs in particulate matter,outlines the generation mechanism and influencing factors of EPFRs,and the impacts of EPFRs on environmental quality and organism health.Results The content of EPFRs in particulate matter ranges from 1017 to 1020 spins∙g−1.Due to the strong mobility of atmospheric particulate matter,the long-term exposure to high levels of EPFRs may aggravate the impact of particulate matter on human health.The interaction between EPFRs and typical gaseous pollutants can alter their fate and influence atmospheric chemical reactions.EPFRs are mainly produced by transition metal elements and substituted aromatic hydrocarbons through electron transfer.Additionally,the chemical bond rupture of organic substances through heat treatment or ultraviolet radiation can also produce EPFRs,and heterogeneous reactions are capable producing them as well.The production of EPFRs is not only influenced by transition metal elements and precursors,but also by various environmental factors such as oxygen,temperature,light radiation,and relative humidity.Discussion EPFRs in atmospheric particulates matters are usually rich in fine particulates with obvious seasonal and regional variations.They can easily enter the human respiratory tract and lungs with inhalable particulates,thereby increasing the risk of exposure.Additionally,EPFRs in atmospheric particulates can interact with some typical gaseous pollutants,impacting the life and fate of EPFRs in the atmosphere,and alter atmospheric chemical reactions.Traditionally,EPFRs are generated by transition metal elements and substituted aromatic hydrocarbons undergoing electron transfer in the post-flame and cool-zone regions of combustion systems and other thermal processes to remove HCl,H_(2)O or CO groups,ultimately produce semiquinones,phenoxyls,and cyclopentadienyls.Recent studies have indicated that EPFRs can also be generated under the conditions of without transition metal elemental.Organics can also produce EPFRs through chemical bond rupture during heat treatment or light radiation conditions,as well as through some heterogeneous reactions and photochemical secondary generation of EPFRs.The presence or absence of oxygen has different effects on the type and yield of EPFRs.The concentration,type,and crystal type of transition metal elements will affect the type,content,and atmospheric lifetime of EPFRs.It is generally believed that the impact of transition metal element types on EPFRs is related to the oxidation-reduction potential.The combustion temperature or heat treatment process significantly affects the type and amount of EPFRs.Factors such as precursor loading content,pH conditions,light radiation and relative humidity also influence the generation of EPFRs.EPFRs can interact with pollutants in the environment during their migration and transformation process in environmental medium.This process accelerates the degradation of pollutants and plays a crucial role in the migration and transformation of organic pollutants in environmental media.The reaction process of EPFRs may lead to the production of reactive oxygen species(ROS)such as∙OH,which can induce oxidative stress,inflammation and immune response to biological lung cells and tissues,leading to chronic respiratory and cardiopulmonary dysfunction,cardiovascular damage and neurotoxic effects,ultimately impacting the health of organisms.Conclusions The interaction mechanism between EPFRs in particulate matter and gaseous pollutants remains unclear.Furthermore,research on the generation mechanism of EPFRs without the participation of transition metals is not comprehensive,and the detection of EPFRs is limited to simple qualitative categories and lack accurate qualitative analysis.Recommendations and perspectives Further research should be conducted on the generation mechanism,measurement techniques,migration pathways,and transformation process of EPFRs.It is also important to explore the interaction between EPFRs in atmospheric particulate matter and typical gaseous pollutants.
基金supported by the National Natural Science Foundation of China(U1705251,21871217,21573170,21433007)the National Key Research and Development Program of China(2018YFB1502001)~~
文摘Sunlight-driven photocatalytic water-splitting for hydrogen(H2)evolution is a desirable strategy to utilize solar energy.However,this strategy is restricted by insufficient light harvesting and high photogenerated electron-hole recombination rates of TiO2-based photocatalysts.Here,a graphene-modified WO3/TiO2 step-scheme heterojunction(S-scheme heterojunction)composite photocatalyst was fabricated by a facile one-step hydrothermal method.In the ternary composite,TiO2 and WO3 nanoparticles adhered closely to reduced graphene oxide(rGO)and formed a novel S-scheme heterojunction.Moreover,rGO in the composite not only supplied abundant adsorption and catalytically active sites as an ideal support but also promoted electron separation and transfer from the conduction band of TiO2 by forming a Schottky junction between TiO2 and rGO.The positive cooperative effect of the S-scheme heterojunction formed between WO3 and TiO2 and the Schottky heterojunction formed between TiO2 and graphene sheets suppressed the recombination of relatively useful electrons and holes.This effect also enhanced the light harvesting and promoted the reduction reaction at the active sites.Thus,the novel ternary WO3/TiO2/rGO composite demonstrated a remarkably enhanced photocatalytic H2 evolution rate of 245.8μmol g^-1 h^-1,which was approximately 3.5-fold that of pure TiO2.This work not only presents a low-cost graphene-based S-scheme heterojunction photocatalyst that was obtained via a feasible one-step hydrothermal approach to realize highly efficient H2 generation without using noble metals,but also provides new insights into the design of novel heterojunction photocatalysts.
基金financially supported by the National Natural Science Foundation of China(51872341,51572209)the Start-up Funds for High-Level Talents of Sun Yat-sen University(38000-31131105)+1 种基金the Fundamental Research Funds for the Central Universities(19lgzd29)the Science and Technology Program of Guangzhou(201707010095)~~
文摘Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combining these carbon-involved photocatalytic oxidation-reduction processes together,by which an artificial photocatalytic carbon cycling process can be established.The key challenge lies in the exploitation of efficient bifunctional photocatalysts,capable of triggering both aerobic oxidation and anaerobic reduction reactions.In this work,a bifunctional ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst is successfully constructed,which not only demonstrates superior aerobic photocatalytic oxidation performance in degrading an organic pollutant(using the dye,Rhodamine B as a model),but also exhibits impressive photocatalytic CO2 reduction performance under anaerobic conditions.Moreover,a direct conversion of Rhodamine B to solar fuels in a one-pot anaerobic reactor can be achieved with the as-prepared ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst.The excellent bifunctional photocatalytic performance of the g-C3N4/Bi/BiVO4 photocatalyst is associated with the formation of efficient S-scheme hybrid junctions,which contribute to promoting the appropriate charge dynamics,and sustaining favorable charge potentials.The formation of the S-scheme heterojunction is supported by scavenger studies and density functional theory calculations.Moreover,the in-situ formed plasmonic metallic Bi nanoparticles in the S-scheme hybrid g-C3N4/Bi/BiVO4 photocatalyst enhances vectorial interfacial electron transfer.This novel bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalyst system provides new insights for the further development of an integrated aerobic-anaerobic reaction system for photocatalytic carbon cycling.
基金supported by the National Natural Science Foundation of China(51602207,21433007,51320105001,21573170)the Self-determined and Innovative Research Funds of SKLWUT(2017-ZD-4,2016-KF-17)the Natural Science Foundation of Hubei Province of China(2015CFA001)~~
文摘TiO2‐based Z‐scheme photocatalysts have attracted considerable attention because of the low recombination rate of their photogenerated electron–hole pairs and their high photocatalytic efficiency.In this review,the reaction mechanism of Z‐scheme photocatalysts,recent research progress in the application of TiO2‐based Z‐scheme photocatalysts,and improved methods for photocatalytic performance enhancement are explored.Their applications,including water splitting,CO2reduction,decomposition of volatile organic compounds,and degradation of organic pollutants,are also described.The main factors affecting the photocatalytic performance of TiO2‐based Z‐scheme photocatalysts,such as pH,conductive medium,cocatalyst,architecture,and mass ratio,are discussed.Concluding remarks are presented,and some suggestions for the future development of TiO2‐based Z‐scheme photocatalysts are highlighted.
文摘Photocatalytic H2 production from water splitting is an effective method to solve energy crisis and environmental pollution simultaneously.Herein,carbon@CdS composite hollow spheres(C@CdS-HS)are fabricated via a facile hydrothermal method using porous carbon hollow spheres(C-HS)as the template.The C@CdS-HS shows an excellent photocatalytic H2-generation rate of 20.9 mmol h^(−1) g^(−1)(apparent quantum efficiency of 15.3%at 420 nm),with 1.0 wt%Pt as a cocatalyst under simulated sunlight irradiation;this rate is 69.7,13.9,and 3.9 times higher than that obtained with pure CdS hollow spheres(CdS-HS),C@CdS-HS,and CdS-HS/Pt,respectively.The enhanced photocatalytic H_(2)-evolution activity of C@CdS-HS/Pt is due to the synergistic effect of C and Pt as the bi-cocatalyst.The C-HS serves not only as an active site provider but also as an electron transporter and reservoir.Moreover,C-HS has a strong photothermal effect that is induced by near infrared light,which kinetically accelerates the H_(2)-production reaction.Additionally,the underlying charge transfer pathway and process from CdS to C−HS is revealed.This work highlights the potential application of C-HS-based nanocomposites in solar-to-chemical energy conversion.
文摘H2 is an important energy carrier for replacing fossil fuel in the future due to its high energy density and environmental friendliness.As a sustainable H2-generation method,photocatalytic H2 production by water splitting has attracted much interest.Here,oil-soluble ZnxCd1-xS quantum dot(ZCS QD)with a uniform particle size distribution were prepared by a hot-injection method.However,no photocatalytic H2-production activity was observed for the oil-soluble ZCS QD due to its hydrophobicity.Thus,the oil-soluble ZCS QD was converted into a water-soluble ZCS QD by a ligand-exchange method.The water-soluble ZCS QD exhibited excellent photocatalytic H2-production performance in the presence of glycerin and Ni^2+,with an apparent quantum efficiency of 15.9%under irradiation of 420 nm light.Further,the photocatalytic H2-generation activity of the ZCS QD was~10.7 times higher than that of the ZnxCd1-xS relative samples prepared by the conventional co-precipitation method.This work will inspire the design and fabrication of other semiconductor QD photocatalysts because QD exhibits excellent separation efficiency for photogenerated electron-hole pairs due to its small crystallite size.
基金supported by the National Natural Science Foundation of China(51578354)Suzhou Science and Technology Bureau(SS201667)+1 种基金Six Talent Peaks Program(2016-JNHB-067)Qing Lan Project of Jiangsu Province~~
文摘A novel p‐n heterostructure photocatalyst m‐Bi2O4/BiOCl was successfully synthetized through a facile ion‐etching method.Via adjusting the added volume of HCl solution,a series of different ratios of composite photocatalysts were obtained.The as‐prepared samples of physical,chemical and optical characteristics were examined by X‐ray diffraction,scanning electron microscope,transmission electron microscope,energy dispersive X‐ray spectroscopy,selected‐area electron diffraction,Fourier transform infrared absorption,Raman microscope,N2 adsorption‐desorption,X‐ray photoelectron spectroscopy and UV‐vis spectrum technologies.The photocatalysts showed high degradation rate and complete mineralization ability for methyl orange and tetracycline solution under visible light.The reaction rate constant of m‐Bi2O4/BiOCl for methyl orange was 52.28 times higher than that of BiOCl.The characterization presented a good stability of materials.Furthermore,the photocurrent response test certified that the heterostructure effectively accelerated the separation and migration of photo‐generated carries.The scavenger experiments evidenced that hole(h+)and superoxide radical(?O2?)were the primary active radicals.A possible photocatalytic mechanism was proposed.This work provided an alternative photocatalyst applied to water environmental remediation.
文摘Surface defect modulation has emerged as a potential strategy for promoting the photocatalytic activity of photocatalysts for various applications, while the impact of the oxygen vacancy on bacterial inactivation is still debated. In this study, oxygen vacancies were introduced to tungsten trioxide nanosheets(WO3–x) via a microwave-assisted route. The as-prepared WO3–x nanosheets exhibited excellent visible-light-driven photocatalytic activity toward E. coli K-12 inactivation, and 6 log orders of the bacterial cells could be completely inactivated within 150 min. The obtained bacterial inactivation rate constant was 15.2 times higher than that of pristine WO3 without oxygen vacancies, suggesting that the surface oxygen vacancy could significantly promote the bacterial inactivation efficiency. The mechanism study indicated that the inactivation of bacterial cells occurs via a direct h+ oxidation pathway. In addition, the role of the oxygen vacancy was studied in detail;the oxygen vacancy was found to not only promote interfacial charge separation but also tune the band structure of WO3, thereby leading to increased h+ oxidation power. Finally, a possible oxygen vacancy-dominated photocatalytic bacterial inactivation mechanism is proposed. This work is expected to offer new insights into the microwave-assisted synthesis of defective photocatalysts and the use of the oxygen vacancy for promoting photocatalytic antibacterial activities.
基金supported by the National Natural Science Foundation of China (21573031, 21373038)the Program for Excellent Talents in Dalian City (2016RD09)the Doctoral Scientific Research Foundation of Liao Ning Province (20170520395)~~
文摘Zr‐Al mixed oxide supported Pt catalysts with different Zr/Al mole ratios(2.5%Pt/ZrxAl(1–x)Oy) were synthesized by an impregnation method and used for the selective hydrogenolysis of glycerol to n‐propanol in an autoclave reactor. The catalysts were fully characterized by X‐ray powder diffrac‐tion, Brunauer‐Emmett‐Teller surface area analysis, CO chemisorption, H2 temperature‐ pro‐grammed reduction, pyridine‐infrared spectroscopy, and NH3‐temperature‐programmed desorp‐tion. The results revealed that the Zr/Al ratio on the support significantly affected the size of the platinum particles and the properties of the acid sites on the catalysts. The catalytic performance was well correlated with the acidic properties of the catalyst; specifically, more acid sites contrib‐uted to the conversion and strong acid sites with a specific intensity contributed to the deep dehy‐dration of glycerol to form n‐propanol. Among the tested catalysts, 2.5 wt% Pt/Zr(0.7)Al(0.3)Oy exhibited excellent selectivity for n‐propanol with 81.2% glycerol conversion at 240 °C and 6.0 MPa H2 pres‐sure when 10% aqueous glycerol solution was used as the substrate. In addition, the effect of vari‐ous reaction parameters, such as H2 content, reaction temperature, reaction time, and number of experimental cycles were studied to determine the optimized reaction conditions and to evaluate the stability of the catalyst.
文摘The development of low-cost semiconductor photocatalysts for highly efficient and durable photocatalytic H2 evolution under visible light is very challenging.In this study,we combine low-cost metallic Ni3C cocatalysts with twin nanocrystal Zn0.5Cd0.5S(ZCS)solid solution homojunctions for an efficient visible-light-driven H2 production by a simple approach.As-synthesized Zn0.5Cd0.5S-1%Ni3C(ZCS-1)heterojunction/homojunction nanohybrid exhibited the highest photocatalytic H2-evolution rate of 783μmol h‒1 under visible light,which is 2.88 times higher than that of pristine twin nanocrystal ZCS solid solution.The apparent quantum efficiencies of ZCS and ZCS-1 are measured to be 6.13%and 19.25%at 420 nm,respectively.Specifically,the homojunctions between the zinc blende and wurtzite segments in twin nanocrystal ZCS solid solution can significantly improve the light absorption and separation of photogenerated electron-hole pairs.Furthermore,the heterojunction between ZCS and metallic Ni3C NP cocatalysts can efficiently trap excited electrons from ZCS solid solution and enhance the H2-evolution kinetics at the surface for improving catalytic activity.This study demonstrates a unique one-step strategy for constructing heterojunction/homojunction hybrid nanostructures for a more efficient photocatalytic H2 evolution compared to other noble metal photocatalytic systems.
文摘Alkaline water splitting is a promising technology for“green hydrogen”generation.To improve its efficiency,highly robust catalysts are required to reduce the overpotential for low electrical power consumption.Heteroatom modification is one of the most effective strategies for boosting catalytic performance,as it can regulate the physicochemical properties of host catalysts to improve their intrinsic activity.Herein,aiming to provide an overview of the impact of heteroatoms on catalytic activity at the atomic level,we present a review of the key role of heteroatoms in enhancing reaction kinetics based on the reaction pathways of the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in alkaline media.In particular,the introduction of heteroatoms can directly and indirectly optimize the interactions between the active sites and intermediates,thus improving the intrinsic activity.To clearly illustrate this influence in detail,we have summarized a series of representative heteroatom-modified electrocatalysts and discussed the important roles of heteroatoms in the OER and HER reaction pathways.Finally,some challenges and perspectives for heteroatom-modified electrodes are discussed.We hope that this review will be helpful for the development of efficient and low-cost electrocatalysts for water electrolysis and other energy conversion applications.
基金supported by the National Natural Science Foundation of China(21707173,51872341,51572209)the Science and Technology Program of Guangzhou(201707010095)+2 种基金the Start-up Funds for High-Level Talents of Sun Yat-sen University(38000-31131103)the Fundamental Research Funds for the Central Universities(19lgzd29)the China Postdoctoral Science Foundation(2017M622869)~~
文摘The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fabricated by a facile vapothermal-assisted topochemical transformation of preformed H-titanate nanobelts.The vapothermal temperature is crucial in tuning the microstructures and photocatalytic redox properties of the resulting mesoporous TiO2 nanofibers.The microstructures were characterized with XRD,TEM,XPS and nitrogen adsorption-desorption isotherms,etc.The photocatalytic activities were evaluated by photocatalytic oxidation of organic pollutant(Rhodamine B as an example)as well as photocatalytic reduction of water to generate hydrogen(H2).The nanofibers vapothermally treated at 150°C showed the highest photocatalytic activity in both oxidation and reduction reactions,2 times higher than that of P25.The oriented alignment and suitable mesoporosity in the resulting nanofiber architecture were crucial for enhancing photocatalytic performances.The oriented alignment of anisotropic anatase nanocrystals shall facilitate faster vectorial charge transportation along the nanofibers architecture.And,the suitable mesoporosity and high surface area would also effectively enhance the mass exchange during photocatalytic reactions.We also demonstrate that efficient energy-recovering photocatalytic water treatments could be accomplished by a cascading oxic-anoxic process where the dye is degraded in the oxic phase and hydrogen is generated in the successive anoxic phase.This study showcases a novel and facile method to fabricate mesoporous TiO2 nanofibers with high photocatalytic activity for both clean energy production and environmental purification.
文摘Bismuth‐based photocatalysts are a class of excellent visible‐light photocatalysts;however,their redox activity is relatively poor and the efficiency of photogenerated carrier separation is low,limiting their development and application in the field of photocatalysis.To address these issues,a series of polyoxometalate PW_(12)O_(40)^(3–)‐doped Bi_(2)O_(3–x)/Bi Schottky photocatalysts PW_(12)@Bi_(2)O_(3–x)/Bi‐n(PBOB‐n,where n is the amount of NaBH4,i.e.,6,12,18,24,and 48 mg)were prepared by a simple electrospinning/calcination/in‐situ NaBH4 reduction method.In this composite photocatalyst,the doping of PW_(12) could effectively adjust the electronic structure of Bi_(2)O_(3–x) and improve its redox properties.As a shallow electron trap,PW_(12) promoted the separation of the photogenerated carriers.Furthermore,desirable Schottky junction between the metal Bi nanoparticles and PW_(12)@Bi_(2)O_(3–x) further accelerated the separation of the photogenerated carriers.The synergistic effect of the aforementioned factors endowed PBOB‐n with excellent photocatalytic activity.Among the samples,PBOB‐18 exhibited superior photocatalytic activity.Under visible‐light irradiation,93.7%(20 mg catalyst)of 20 ppm tetrabromobisphenol A(TBBPA,20 mL)was degraded in 60 min.Its activity was 4.4 times higher than that of Bi_(2)O_(3).PBOB‐18 also exhibited an ultrahigh photocatalytic performance for the removal of NO.Its removal rate(600 ppb)reached 83.3%in 30 min,making it one of the most active Bi‐based photocatalysts.Furthermore,the photocatalytic mechanisms of PBOB‐18 for TBBPA and NO have been proposed.This work provides a new direction and reference for the design of low‐cost,efficient,stable,and versatile photocatalysts.
文摘To improve the photocatalytic oxidation reaction activity for NO removal, photocatalysts with excellent activity are required to activate molecular oxygen. Solid solution and heterojunction were suggested as effective strategies to enhance the molecular oxygen activation viaexciton and carrier photocatalysis. In this study, a solid solution and heterojunction containing BiOBr0.5I0.5/BiOI catalyst was synthesized, and it showed improved photocatalytic activity for removing NO. The photocatalytic NO removal mechanism indicated that synergistic effects between the solid solution and heterojunction induced the enhanced activity for molecular oxygen activation. The photogenerated holes, superoxide, and singlet oxygen generated by the carrier and exciton photocatalysis supported the high photocatalytic NO removal efficiency. This study provides new ideas for designing efficient Bi-O-X(X = Cl, Br, I) photocatalysts for oxidation reactions.
文摘A synergistic UV/TiO2/Fenton(PCF)process is investigated for the degradation of ibuprofen(IBP)at circumneutral pH.The IBP decay in the PCF process is much faster than that with the conventional UV,UV/H2O2,Fenton,photo‐Fenton,and photocatalysis processes.The kinetics analysis showed that the IBP decay follows a two‐stage pseudo‐first order profile,that is,a fast IBP decay(k1)followed by a slow decay(k2).The effects of various parameters,including initial pH level,dosage of Fenton’s reagent and TiO2,wavelength of UV irradiation,and initial IBP concentration,are evaluated.The optimum pH level,[Fe2+]0,[Fe2+]0/[H2O2]0 molar ratio,and[TiO2]0 are determined to be approximately 4.22,0.20 mmol/L,1/40,and 1.0 g/L,respectively.The IBP decay at circumneutral pH(i.e.,6.0–8.0 for wastewater)shows the same IBP decay efficiency as that at the optimum pH of 4.22 after 30 min,which suggests that the PCF process is applicable for the treatment of wastewater in the circumneutral pH range.The lnk1 and lnk2 are observed to be linearly correlated to 1/pH0,[IBP]0,[H2O2]0,[H2O2]0/[Fe2+]0 and ln[TiO2]0.Mathematical models are therefore derived to predict the IBP decay.
文摘The widespread utilization of fossil fuels has caused an associated increase in CO_(2) emissions over the past few decades,which has resulted in global warming and ocean acidification.CO hydrogenation(Fischer‐Tropsch synthesis,FTS)is considered a significant route for the production of liquid fuels and chemicals from nonpetroleum sources to meet worldwide demand.Conversion of CO_(2) with renewable H_(2) into valuable hydrocarbons is beneficial for reducing dependence on fossil fuels and mitigating the negative effects of high CO_(2) concentrations in the atmosphere.Iron‐based catalysts exhibit superior catalytic performance in both FTS and CO_(2) hydrogenation to value‐added hydrocarbons.The abundance and low cost of iron‐based catalysts also promote their wide application in CO_(x) hydrogenation.This paper provides a comprehensive overview of the significant developments in the application of iron‐based catalysts in these two fields.The active phases,promoter effect,and support of iron‐based catalysts are discussed in the present paper.Based on understanding of these three essential aspects,we also cover recent advances in the design and preparation of novel iron‐based catalysts for FTS and CO_(2) hydrogenation.Current challenges and future catalytic applications are also outlined.