期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Exploring innovative synthetic solutions for advanced polymer-based electrochromic energy storage devices:Phenoxazine as a promising chromophore
1
作者 Catalin-Paul Constantin Mihaela Balan-Porcarasu Gabriela Lisa 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期433-452,共20页
The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazo... The current investigation offers an innovative synthetic solution regarding electrochromic(EC)and energy storage applications by exploring phenoxazine(POZ)moiety.Subsequently,three POZ-based polymers(polyimide,polyazomethine,and polyamide)were synthesized to ascertain the superior performer.The polyamide exhibited remarkable attributes,including high redox stability during 500 repetitive CVs,optical contrast of 61.98%,rapid response times of 1.02 and 1.38 s for coloring and bleaching,EC efficiency of 280 cm^(2)C^(-1).and decays of the optical density and EC efficiency of only 12.18%and 6.23%after 1000 cycles.Then,the energy storage performance of polyamide PA was tested,for which the following parameters were obtained:74.7 F g^(-1)(CV,scan rate of 10 mV s^(-1))and 118 F g^(-1)(GCD,charging current of 0.1 A g^(-1)).Then,the polyamide was tested in EES devices,which yielded the following EC parameters:an optical contrast of 62.15%,response times of 9.24 and 5.01 s for coloring and bleaching,EC efficiency of 178 cm^(2)C^(-1),and moderate decays of 20.25%and 23.24%for the optical density and EC efficiency after 500 cycles.The energy storage performance included a capacitance of 106 F g^(-1)(CV,scan rate of 0.1 mV s^(-1))and 9.23 F g^(-1)(GCD,charging current of 0.1 A g^(-1)),capacitance decay of 11.9%after500 cycles,and 1.7 V retention after 2 h.Also,two EES devices connected in series powered a 3 V LED for almost 30 s. 展开更多
关键词 POLYMERS PHENOXAZINE Electrochromic Energy storage Electrochromi cenergy storage devices
下载PDF
Ionic liquids for CO_(2) electrochemical reduction 被引量:5
2
作者 Fangfang Li Francesca Mocci +2 位作者 Xiangping Zhang Xiaoyan Ji Aatto Laaksonen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期75-93,共19页
Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energ... Electrochemical reduction of CO_(2) is a novel research field towards a CO_(2)-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energy in value-added chemicals and fuels.Ionic liquids(ILs),as medium and catalysts(or supporting part of catalysts)have been given wide attention in the electrochemical CO_(2) reduction reaction(CO_(2) RR)due to their unique advantages in lowering overpotential and improving the product selectivity,as well as their designable and tunable properties.In this review,we have summarized the recent progress of CO_(2) electro-reduction in IL-based electrolytes to produce higher-value chemicals.We then have highlighted the unique enhancing effect of ILs on CO_(2) RR as templates,precursors,and surface functional moieties of electrocatalytic materials.Finally,computational chemistry tools utilized to understand how the ILs facilitate the CO_(2) RR or to propose the reaction mechanisms,generated intermediates and products have been discussed. 展开更多
关键词 Carbon dioxide Ionic liquids ELECTRO-REDUCTION ELECTROLYTE Electrocatalytic material Computer simulation
下载PDF
纳米纤维素基柔性导电薄膜的构筑及其在柔性电子器件中的应用研究进展 被引量:2
3
作者 刘亚丽 张素风 +5 位作者 李楠 李磊 朱新月 邓婷婷 刘叶 Sergiu Coseri 《中国造纸》 CAS 北大核心 2023年第5期87-97,共11页
纳米纤维素(NC)因具有高比表面积、优异的力学性能、出色的热稳定性和可生物降解性,是柔性储能设备电极材料的理想候选者。在柔性电子器件的应用中,通常将NC与导电材料结合以提高其导电性。本文从NC的结构特点出发,综述了NC基导电薄膜... 纳米纤维素(NC)因具有高比表面积、优异的力学性能、出色的热稳定性和可生物降解性,是柔性储能设备电极材料的理想候选者。在柔性电子器件的应用中,通常将NC与导电材料结合以提高其导电性。本文从NC的结构特点出发,综述了NC基导电薄膜的形成及其在柔性电子器件的应用,总结分析了NC基导电薄膜在实际应用中存在的问题和挑战,并对其未来的研究方向进行展望。 展开更多
关键词 纳米纤维素 导电薄膜 柔性电子 可穿戴电子 储能设备
下载PDF
Upon the Delivery Properties of a Polymeric System Based on Poly(2-Hydroxyethyl Methacrylate) Prepared with Protective Colloids
4
作者 Loredana E. Nita Aurica P. Chiriac +1 位作者 Manuela Nistor Tatiana Budtova 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期357-364,共8页
A comparative study related to the preparation of poly(2-hydroxyethyl methacrylate) (pHEMA) through radical polymerization process in the presence of three different protective colloid substances, respectively poly(vi... A comparative study related to the preparation of poly(2-hydroxyethyl methacrylate) (pHEMA) through radical polymerization process in the presence of three different protective colloid substances, respectively poly(vinyl alcohol) (PVA), β-cyclodextrin, or poly(aspartic acid) (PAS), is presented. The dependence of the thermal behavior of the polymers as well as their morphological aspect, on the protective colloids used in synthesis was evidenced by polymers characterization. It is also demonstrated that the swelling capacity is dependent on the protective colloid variant present during the pHEMA preparation. This behavior induces as well interdependence on the ability to load bioactive compounds onto the polymeric matrices. The distribution of the indomethacin (INN), as model drug, into the pHEMA network was put into evidence by near infrared chemical imaging (NIR-CI), a non-destructive technique and with its correspondingly statistical analysis. 展开更多
关键词 BIOCOMPATIBLE POLYMERS Polymer Network β CYCLODEXTRIN Poly(Aspartic Acid)
下载PDF
Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts 被引量:1
5
作者 Asad Ali Aatto Laaksonen +6 位作者 Guo Huang Shahid Hussain Shuiping Luo Wen Chen Pei Kang Shen Jinliang Zhu Xiaoyan Ji 《Nano Research》 SCIE EI CSCD 2024年第5期3516-3532,共17页
The global practical implementation of proton exchange membrane fuel cells(PEMFCs)heavily relies on the advancement of highly effective platinum(Pt)-based electrocatalysts for the oxygen reduction reaction(ORR).To ach... The global practical implementation of proton exchange membrane fuel cells(PEMFCs)heavily relies on the advancement of highly effective platinum(Pt)-based electrocatalysts for the oxygen reduction reaction(ORR).To achieve high ORR performance,electrocatalysts with highly accessible reactive surfaces are needed to promote the uncovering of active positions for easy mass transportation.In this critical review,we introduce different approaches for the emerging development of effective ORR electrocatalysts,which offer high activity and durability.The strategies,including morphological engineering,geometric configuration modification via supporting materials,alloys regulation,core-shell,and confinement engineering of single atom electrocatalysts(SAEs),are discussed in line with the goals and requirements of ORR performance enhancement.We review the ongoing development of Pt electrocatalysts based on the syntheses,nanoarchitecture,electrochemical performances,and stability.We eventually explore the obstacles and research directions on further developing more effective electrocatalysts. 展开更多
关键词 oxygen reduction reaction(ORR) Pt-based electrocatalysts proton exchange membrane fuel cells(PEMFCs) morphology and alloys strategies single atom electrocatalysts(SAEs)
原文传递
Cellulose-Based Conductive Hydrogels for Emerging Intelligent Sensors
6
作者 Xue Yao Sufeng Zhang +2 位作者 Ning Wei Liwei Qian Sergiu Coseri 《Advanced Fiber Materials》 SCIE EI CAS 2024年第5期1256-1305,共50页
Flexible intelligent sensing is a burgeoning field of study that covers various disciplines,including but not restricted to chemistry,physics,electronics and biology.However,the widespread use of flexible sensors rema... Flexible intelligent sensing is a burgeoning field of study that covers various disciplines,including but not restricted to chemistry,physics,electronics and biology.However,the widespread use of flexible sensors remains challenging because of certain constraints,such as limited stretchability,poor biocompatibility,low responsivity,and the complexity of multifunc-tional integration.Conductive hydrogels with remarkable material properties are presently in the spotlight of flexible sens-ing.In the pursuit of high-performance and“green”conductive hydrogel-based sensors,cellulose is a promising candidate owing to its renewability,low cost,appealing mechanical properties,easy modification and other functional characteristics.Herein,cutting-edge progress in the fabrication of conductive cellulose hydrogels(CCHs)using cellulose and cellulose derivatives in terms of structural features,preparation approaches,functional properties,applications,and prospects for sensors is comprehensively summarized.The correlation between CCHs performances,reinforcement strategies and sensor properties is highlighted to gain insight into the process of developing smart sensors by utilizing CCHs.Besides,the state-of-the-art advances of CCHs toward emerging wearable sensors,including strain/pressure sensors,temperature sensors,humidity sensors,and biosensors,are systematically discussed.Finally,potential challenges and future outlooks of such attractive CCH-based flexible sensors are presented,providing valuable information for the development of next-generation cellulose-based electronic devices. 展开更多
关键词 CELLULOSE Conductive hydrogels Biomass materials Flexible sensors Green electronics
原文传递
Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril)pseudorotaxane at single molecule level
7
作者 Aurica Farcas Hadjer Ouldali +3 位作者 Corneliu Cojocaru Manuela Pastoriza-Gallego Ana-Maria Resmerita Abdelghani Oukhaled 《Nano Research》 SCIE EI CSCD 2023年第2期2728-2737,共10页
A multi-technique approach to prove the preparation of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril)pseudorotaxanes(PEDOT∙CB7-PPs)is reported.Molecular docking simulation and matrix-assisted laser desorption/ioniza... A multi-technique approach to prove the preparation of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril)pseudorotaxanes(PEDOT∙CB7-PPs)is reported.Molecular docking simulation and matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS)validate the complexation ability of the CB7 molecule towards 3,4-ethylenedioxythiophene(EDOT),which leads to the EDOT∙CB7 inclusion complex.Oxidative polymerization of EDOT∙CB7 enabled the synthesis of PEDOT∙CB7-PPs.The water-soluble part of PEDOT∙CB7-PPs was selected,freeze-dried,and chemically characterized.Furthermore,dynamic light scattering(DLS)has been used to study the particle size and z-potential(ZP-ζ)of PEDOT∙CB7-PPs.The ZP-ζvalue(35 mV)evidenced that the PEDOT∙CB7-PPs formed stable water dispersion.By combining the emerging nanopore resistive pulse sensing technique(Np-RPS)and computational modeling,we identified strong interactions of PEDOT∙CB7-PPs with the aerolysin(Ael)nanopore.PEDOT∙CB7-PPs behave as positive charged species,and thus trans negative bias promotes its interactions with the Ael nanopore.The computational modeling results are fully consistent with the Np-RPS detection,which also reveals strong interactions between PEDOT∙CB7-PPs and the Ael nanopore.With this study,we hope to provide new insights and a better understanding of the interactions between supramolecular complexes based on CB7 and biological entities,which is instrumental for future applications in the field of nanobiotechnology. 展开更多
关键词 supramolecular encapsulation poly(3 4-ethylenedioxythiophene)(PEDOT) uril AEROLYSIN electrical detection computational modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部