Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermom...Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.展开更多
Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their for...Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.展开更多
基金supported by the National Key R&D Program of China(2018YFA0702701)the Fundamental Research Funds for the Central Universities(WK3410000015).
文摘Infrared microthermometry allows direct measurement of fluid inclusions hosted in opaque ore minerals and can provide direct constraints on the evolution of ore-forming fluids.This study presents infrared microthermometry of spherite-hosted fluid inclusions from the Xinqiao deposit in the Middle-Lower Yangtze Metallogenic Belt and sheds new light on the ore genesis of the deposit.Considering that infrared light may lead to non-negligible temperature deviations during microthermometry,some tests were first conducted to ensure the accuracy of the microthermometric measurements.The measurement results indicated that using the lowest light intensity of the microscope and inserting an optical filter were effective in minimizing the possible temperature deviations of infrared microthermometry.All sphalerite-hosted fluid inclusions from the Xinqiao deposit were aqueous.They show homogenization temperature ranging from~200 to 350℃,but have two separate salinity groups(1.0 wt%-10 wt%and 15.1 wt%-19.2 wt%NaCl equivalent).The low-salinity group represents sedimentary exhalative(SEDEX)-associated fluids,whereas the high-salinity group results from modification by later magmatic hydrothermal fluids.Combined with published fluid inclusion data,the four-stage fluid evolution of the Xinqiao deposit was depicted.Furthermore,our data suggest that the Xinqiao deposit was formed by twostage metallogenic events including SEDEX and magmatic-hydrothermal mineralization.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Fundamental Research Funds for the Central Universities(WK2080000144)。
文摘Araneiforms are spider-like ground patterns that are widespread in the southern polar regions of Mars.A gas erosion process driven by the seasonal sublimation of CO_(2) ice was proposed as an explanation for their formation,which cannot occur on Earth due to the high climatic temperature.In this study,we propose an alternative mechanism that attrib-utes the araneiform formation to the erosion of upwelling salt water from the subsurface,relying on the identification of the first terrestrial analog found in a playa of the Qaidam Basin on the northern Tibetan Plateau.Morphological analysis indicates that the structures in the Qaidam Basin have fractal features comparable to araneiforms on Mars.A numerical model is developed to investigate the araneiform formation driven by the water-diffusion mechanism.The simulation res-ults indicate that the water-diffusion process,under varying ground conditions,may be responsible for the diverse aranei-form morphologies observed on both Earth and Mars.Our numerical simulations also demonstrate that the orientations of the saltwater diffusion networks are controlled by pre-existing polygonal cracks,which is consistent with observations of araneiforms on Mars and Earth.Our study thus suggests that a saltwater-related origin of the araneiform is possible and has significant implications for water searches on Mars.