数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{an}中已知a1且满足 an=f(n)an-1+g(n...数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{an}中已知a1且满足 an=f(n)an-1+g(n) (n=2,3,4…)则an=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a1+g(2)=a2展开更多
文摘数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{an}中已知a1且满足 an=f(n)an-1+g(n) (n=2,3,4…)则an=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a1+g(2)=a2