期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合自适应聚类与母蚁引导策略的蚁群算法
1
作者 邢李成 游晓明 刘升 《计算机科学与探索》 CSCD 北大核心 2024年第9期2395-2406,共12页
针对蚁群算法在求解较大规模旅行商问题时,容易出现陷入局部最优、收敛速度较慢的情况,提出一个融合自适应聚类与母蚁引导策略的蚁群算法(AMACS)。在自适应聚类中,使用改进的聚类方法,利用最大最小距离与类密度的思想,通过自适应聚类策... 针对蚁群算法在求解较大规模旅行商问题时,容易出现陷入局部最优、收敛速度较慢的情况,提出一个融合自适应聚类与母蚁引导策略的蚁群算法(AMACS)。在自适应聚类中,使用改进的聚类方法,利用最大最小距离与类密度的思想,通过自适应聚类策略,获得最佳聚类结果,并快速获得各个类的优化解;利用近邻原则,将相邻的类进行蛛网融合,从而有效提高了初始解的精度。通过母蚁引导策略对初始解进行优化,其中母蚁引导策略包括路径诱导与信息素优化两个部分:路径诱导将初始解设定为第一代的解,提高了算法的稳定性;信息素优化通过对初始解路径进行信息素激励,提高了解的精度。使用随机重组策略对信息素进行重组以及随机激励,使算法尽量跳出局部最优,提高了算法的精度。实验结果表明,提出的算法在求解大规模旅行商问题时,不仅保证了解的精度,而且提高了算法的稳定性。 展开更多
关键词 蚁群算法 聚类算法 旅行商问题 信息素优化 母蚁引导
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部