采用同源建模的方法构建了斑马鱼γ-氨基丁酸A型(GABAA)受体和果蝇RDL(resistance to dieldrin)受体跨膜区的三维结构,研究了氟虫腈在两个受体中作用位点的差异;采用分子对接和分子动力学方法,探讨了氟虫腈与斑马鱼GABAA受体和果...采用同源建模的方法构建了斑马鱼γ-氨基丁酸A型(GABAA)受体和果蝇RDL(resistance to dieldrin)受体跨膜区的三维结构,研究了氟虫腈在两个受体中作用位点的差异;采用分子对接和分子动力学方法,探讨了氟虫腈与斑马鱼GABAA受体和果蝇RDL受体的结合模式,并比较了氟虫腈与两个受体作用的差异性。结果表明:斑马鱼 GABAA受体和氟虫腈作用位点的结构与果蝇RDL受体和氟虫腈作用位点的结构存在一定的差异,果蝇 RDL 受体中的 Ala301对应斑马鱼GABAA受体α1亚基中的Val284和γ2亚基中的Ser306,氨基酸构象的差异较大;氟虫腈与斑马鱼GABAA受体的结合位点靠近胞内区一端,而与果蝇RDL受体的结合位点则位于受体第二跨膜区的Ala301~Leu308区域内。复合物分子动力学模拟结果表明,在模拟过程中,两个受体与氟虫腈复合物体系的势能可很快达到平衡状态。斑马鱼GABAA受体与氟虫腈之间形成4个氢键,其中概率大于60%的氢键有2个;而尽管果蝇RDL受体与氟虫腈形成了6个氢键,但只有1个氢键的概率大于50%,其复合物结合的稳定性比前者低。展开更多
文摘利用荧光标记法及分子模拟法,研究了氟虫腈与昆虫γ-氨基丁酸(aminobutyric acid,GABA)受体的相互作用。荧光标记试验结果显示,氟虫腈与家蝇脑内GABA受体有较强的相互作用,其最大结合量[RT]值和亲和常数K_d值分别为(21.3±2.5)pmol/mg protein和(109±9)nmol/L。分子模拟结果显示:氟虫腈与果蝇RDL受体间形成3条氢键;两者之间的CDOCKER的相互作用能为–137.93 k J/mol。试验和理论两方面均证实,氟虫腈对昆虫GABA受体的强亲和性是导致氟虫腈对昆虫产生高毒性的重要原因。