将数据集进行合理的维数约简,对于提高一些机器学习算法的效率起着至关重要的影响.本文提出了一种自适应全局—局部集成判别分析算法(Adaptive integrated global and local discriminant analysis,AIGLD).AILGD利用数据集的全局判别结...将数据集进行合理的维数约简,对于提高一些机器学习算法的效率起着至关重要的影响.本文提出了一种自适应全局—局部集成判别分析算法(Adaptive integrated global and local discriminant analysis,AIGLD).AILGD利用数据集的全局判别结构和局部判别结构,将线性判别算法(Linear Discriminant Analysis,LDA)与提出的局部判别算法自适应的相结合.在UCI数据库及标准人脸数据库上的识别实验证明,相比于现有算法,AIGLD具有更高的识别准确率及更强的鲁棒性.展开更多
文摘将数据集进行合理的维数约简,对于提高一些机器学习算法的效率起着至关重要的影响.本文提出了一种自适应全局—局部集成判别分析算法(Adaptive integrated global and local discriminant analysis,AIGLD).AILGD利用数据集的全局判别结构和局部判别结构,将线性判别算法(Linear Discriminant Analysis,LDA)与提出的局部判别算法自适应的相结合.在UCI数据库及标准人脸数据库上的识别实验证明,相比于现有算法,AIGLD具有更高的识别准确率及更强的鲁棒性.