期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自适应偏最小二乘回归法的CUACE模式污染物预报偏差订正改进方法研究 被引量:15
1
作者 吕梦瑶 程兴宏 +4 位作者 张恒德 刁志刚 谢超 刘超 江琪 《环境科学学报》 CAS CSCD 北大核心 2018年第7期2735-2745,共11页
针对GRAPES-CUACE模式预报的6种常规污染物浓度,采用非线性动力统计-订正方法——自适应偏最小二乘回归法,建立了中国不同地区的CUACE模式预报偏差订正模型,采用多种敏感性试验优选了不同季节各区域的最优自变量组合方案,并对2016年1—... 针对GRAPES-CUACE模式预报的6种常规污染物浓度,采用非线性动力统计-订正方法——自适应偏最小二乘回归法,建立了中国不同地区的CUACE模式预报偏差订正模型,采用多种敏感性试验优选了不同季节各区域的最优自变量组合方案,并对2016年1—3月、11—12月全国342个城市PM_(2.5)浓度预报值进行了滚动订正检验,分析了订正前后PM_(2.5)浓度的时空变化特征,重点分析了该方法在京津冀、长三角、珠三角、川渝地区等关键区域的适用性及其改进效果.结果表明:(1)CUACE模式预报PM_(2.5)浓度普遍低于观测浓度,且与实测值的相关系数较低;CUACE 15 km分辨率模式PM_(2.5)浓度预报效果优于54 km分辨率模式,其中长三角地区改进最显著,珠三角和京津冀次之,川渝地区预报效果较差.(2)订正后的PM_(2.5)浓度更接近于实测值,订正后误差明显减小,相关系数明显提高,而且订正值与实测值的散点集中分布于对角线附近.(3)长三角地区PM_(2.5)浓度订正效果最好,准确率可达72.3%;珠三角地区次之,准确率为66.3%;京津冀和川渝地区订正效果稍差,但准确率亦可达63.6%和62.6%.(4)订正后污染日和非污染日的准确率、相关系数分别提高了57.5%和25.9%、304.8%和15.2%;绝对平均偏差、均方根误差分别减小了38.9%和18.7%、21.8%和8.5%.(5)针对北京、上海、广州、乐山的不同重污染过程,订正后的平均绝对误差分别减小了12.07%、46.63%、36.66%、17.71%,相关系数分别提升了25.86%、22.22%、16.92%、162.5%,说明该订正方法适用于不同地区的不同重污染过程的预报. 展开更多
关键词 自适应偏最小二乘回归法 CUACE模式 PM2.5偏差订正 改进方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部