期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于高斯核支持向量机和遗传算法的优化组合研究
被引量:
3
1
作者
马静
李星野
徐荣
《经济数学》
2017年第1期11-17,共7页
选用2008~2015共8年数据,首先基于高斯核的支持向量机在沪市A股上构建周期性的投资组合,并通过误差图和评价指标与BP神经网络、广义回归神经网络进行比较,结果表明了支持向量机在股票预测上更具有优势.再将改进遗传算法运用于上证股票...
选用2008~2015共8年数据,首先基于高斯核的支持向量机在沪市A股上构建周期性的投资组合,并通过误差图和评价指标与BP神经网络、广义回归神经网络进行比较,结果表明了支持向量机在股票预测上更具有优势.再将改进遗传算法运用于上证股票市场构建最优投资组合,以上证指数作为基准进行比较,得出混合遗传算法优化组合的模型相比单一模型更为有效.
展开更多
关键词
机器学习
高斯核支持向量机
遗传算法
投资组合
下载PDF
职称材料
题名
基于高斯核支持向量机和遗传算法的优化组合研究
被引量:
3
1
作者
马静
李星野
徐荣
机构
上海理工大学管理学院数量经济学专业
出处
《经济数学》
2017年第1期11-17,共7页
文摘
选用2008~2015共8年数据,首先基于高斯核的支持向量机在沪市A股上构建周期性的投资组合,并通过误差图和评价指标与BP神经网络、广义回归神经网络进行比较,结果表明了支持向量机在股票预测上更具有优势.再将改进遗传算法运用于上证股票市场构建最优投资组合,以上证指数作为基准进行比较,得出混合遗传算法优化组合的模型相比单一模型更为有效.
关键词
机器学习
高斯核支持向量机
遗传算法
投资组合
Keywords
machine learning
Gaussian kernel support vector machine,genetic algorithm
optimal portfolio
分类号
F064.1 [经济管理—政治经济学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于高斯核支持向量机和遗传算法的优化组合研究
马静
李星野
徐荣
《经济数学》
2017
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部