期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
XGBoost机器学习在光电编码器误差补偿中的应用
1
作者
李映铮
李志斌
+3 位作者
金磊
胡珍珍
康晔斐
李庚白
《光学仪器》
2023年第1期32-37,共6页
光电编码器检测系统的误差主要受基准光电编码器测角误差、数据采集误差、检测系统同轴误差影响。其中,基准光电编码器的测角误差可进行补偿。因此设计了一种基于极度梯度提升树(extreme gradient boosting,XGBoost)机器学习的算法用来...
光电编码器检测系统的误差主要受基准光电编码器测角误差、数据采集误差、检测系统同轴误差影响。其中,基准光电编码器的测角误差可进行补偿。因此设计了一种基于极度梯度提升树(extreme gradient boosting,XGBoost)机器学习的算法用来补偿基准光电编码器的误差。经该算法补偿后,静态精度提高了35倍,标准差由3.62″减小至0.13″,最大误差值由5.53″降低至0.39″。与传统的误差反传(back progagation,BP)神经网络算法以及径向基函数(radial basis function,RBF)神经网络算法补偿效果相比,XGBoost的补偿效果更优。XGBoost机器学习算法有效降低了基准光电编码器的测量误差,提高了光电编码器检测系统的检测精度。
展开更多
关键词
光电编码器
误差补偿
XGBoost
检测精度
下载PDF
职称材料
题名
XGBoost机器学习在光电编码器误差补偿中的应用
1
作者
李映铮
李志斌
金磊
胡珍珍
康晔斐
李庚白
机构
上海电力大学自动化系
出处
《光学仪器》
2023年第1期32-37,共6页
基金
上海市电站自动化技术重点实验室项目(13DZ2273800)。
文摘
光电编码器检测系统的误差主要受基准光电编码器测角误差、数据采集误差、检测系统同轴误差影响。其中,基准光电编码器的测角误差可进行补偿。因此设计了一种基于极度梯度提升树(extreme gradient boosting,XGBoost)机器学习的算法用来补偿基准光电编码器的误差。经该算法补偿后,静态精度提高了35倍,标准差由3.62″减小至0.13″,最大误差值由5.53″降低至0.39″。与传统的误差反传(back progagation,BP)神经网络算法以及径向基函数(radial basis function,RBF)神经网络算法补偿效果相比,XGBoost的补偿效果更优。XGBoost机器学习算法有效降低了基准光电编码器的测量误差,提高了光电编码器检测系统的检测精度。
关键词
光电编码器
误差补偿
XGBoost
检测精度
Keywords
photoelectric encoder
error compensation
XGBoost
accuracy of detection
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
XGBoost机器学习在光电编码器误差补偿中的应用
李映铮
李志斌
金磊
胡珍珍
康晔斐
李庚白
《光学仪器》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部