二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石...二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石墨烯/Ti O2复合材料(RGO/Ti O2).电化学测试结果表明,还原氧化石墨烯改性的RGO/Ti O2复合材料的电化学性能得到显著提升,RGO含量为4.0%(w)的RGO/Ti O2复合材料在各种电流密度下的可逆容量分别为183.7 m Ah?g-1(20 m A?g-1),153.7 m Ah?g-1(100 m A?g-1)和114.4 m Ah?g-1(600m A?g-1),而纯Ti O2的比容量仅为93.6 m Ah?g-1(20 m A?g-1),69.6 m Ah?g-1(100 m A?g-1)和26.5 m Ah?g-1(600m A?g-1).4.0%(w)RGO/Ti O2复合材料体现了良好的循环稳定性,在100 m A?g-1电流密度下充放电循环350个周期后,比容量仍然保持146.7 m Ah?g-1.同等条件下,纯Ti O2电极比容量只有68.8 m Ah?g-1.RGO包覆改性极大提高了Ti O2在钠离子电池中的电化学嵌钠/脱钠性能.RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.展开更多
水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可...水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.展开更多
采用共沉淀法制备了三元材料LiNi0.4Co0.2Mn0.4O2,掺杂不同比例铷进行改性,对其进行了结构表征,考察了其电化学性能.结果表明,Li0.97Rb0.03Ni0.4Co0.2Mn0.4O2样品的结晶度较好,铷掺杂起到了稳定三元材料晶体结构的作用,有效改善了材料...采用共沉淀法制备了三元材料LiNi0.4Co0.2Mn0.4O2,掺杂不同比例铷进行改性,对其进行了结构表征,考察了其电化学性能.结果表明,Li0.97Rb0.03Ni0.4Co0.2Mn0.4O2样品的结晶度较好,铷掺杂起到了稳定三元材料晶体结构的作用,有效改善了材料的电化学性能,5C倍率下放电比容量达130 m A×h/g.展开更多
累托石是由二八面体的云母层与蒙托石层交替堆叠而成(1:1)的规则间层黏土矿物,是我国特有的矿种。目前的累托石开发中存在产品价廉、附加值低等问题,如应用于建筑材料等。与此同时,锂电池工业的快速发展亟需开发高容量的硅基负极材料。...累托石是由二八面体的云母层与蒙托石层交替堆叠而成(1:1)的规则间层黏土矿物,是我国特有的矿种。目前的累托石开发中存在产品价廉、附加值低等问题,如应用于建筑材料等。与此同时,锂电池工业的快速发展亟需开发高容量的硅基负极材料。本文利用累托石特殊的层状结构和Si-Al交替分布的特征,采用镁热技术实现了从累托石到片状多孔硅的转化。通过碳包覆制备的硅碳复合材料可逆容量可达1300 m Ah·g^(–1),同时具有良好的循环稳定性和倍率特性。证实利用累托石制备高性能硅基锂电池负极材料是可行的,为累托石的高值化综合利用提供候选途径。展开更多
文摘二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石墨烯/Ti O2复合材料(RGO/Ti O2).电化学测试结果表明,还原氧化石墨烯改性的RGO/Ti O2复合材料的电化学性能得到显著提升,RGO含量为4.0%(w)的RGO/Ti O2复合材料在各种电流密度下的可逆容量分别为183.7 m Ah?g-1(20 m A?g-1),153.7 m Ah?g-1(100 m A?g-1)和114.4 m Ah?g-1(600m A?g-1),而纯Ti O2的比容量仅为93.6 m Ah?g-1(20 m A?g-1),69.6 m Ah?g-1(100 m A?g-1)和26.5 m Ah?g-1(600m A?g-1).4.0%(w)RGO/Ti O2复合材料体现了良好的循环稳定性,在100 m A?g-1电流密度下充放电循环350个周期后,比容量仍然保持146.7 m Ah?g-1.同等条件下,纯Ti O2电极比容量只有68.8 m Ah?g-1.RGO包覆改性极大提高了Ti O2在钠离子电池中的电化学嵌钠/脱钠性能.RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.
文摘水分解是一种利用可再生能源驱动的绿色制氢方法,零碳排放特性使其成为解决氢能源生产的重要途径.在电化学水分解中,制备高活性和稳定性的催化剂至关重要.高熵合金(HEAs)由于独特的结构和性能使其成为理想的催化剂材料,其多元成分和可调组成提供了丰富的表面活性位点和灵活的催化特性,有望提高水分解的效率并降低成本.然而,简易高效地制备HEAs仍面临挑战,且目前对HEA催化剂的结构-活性关系的了解存在不足.因此,探索一种简便有效的方法用以制备高性能HEAs催化剂,并深入理解其在水分解反应中的作用机制和结构演变,能够为未来绿色制氢技术的发展提供重要的科学基础和技术支持.本文采用了电化学测量、CuK-边和PtL3-边的原位同步辐射X射线吸收光谱(XAS)测试以及密度泛函理论(DFT)计算相结合的方法,系统地研究了高熵合金电催化剂PtPdRhRuCu/C的析氢反应(HER)活性、反应机制以及结构演变规律.PtPdRhRuCu HEAs纳米颗粒由简便的一步溶剂热法制备,直径约为6.7±0.6 nm,其合金结构和元素分布通过多种表征手段(扫描透射电子显微镜、X射线衍射和能量色散X射线光谱等)得到确认.XAS对Cu K-边和PtL3-边的分析结果显示,HEAs纳米颗粒表面的少量铜氧化物在HER过程中被还原至金属态.扩展X射线吸收精细结构的拟合结果表明,HEAs在工况HER中保持了金属态和无序的原子排列,没有新的分离相形成.电化学测试结果表明,得益于多金属活性位点,PtPdRhRuCu/C催化剂在酸性和碱性条件下均表现出较好的HER活性和耐久性.在10 m Acm^(-2)的电流密度下,该催化剂在1molL^(-1)KOH中具有23.3 m V的极低过电位,优于商业Pt/C催化剂(50.3 m V),其质量活性是Pt/C的7.9倍,达到3.0 Amg^(-1)Pt.PtPdRhRuCu的高熵效应显著提升了催化剂在HER中的长期稳定性,在稳定性测试中,PtPdRhRuCu/C催化剂在10000次循环伏安测试后几乎无性能衰减,而Pt/C的过电位增加了约24 m V.在-55 m V过电位下的30 h的HER测试中,PtPdRhRuCu/C保持95.7%的初始电流密度,而Pt/C衰减了53.6%.在酸性条件下,PtPdRhRuCu/C的循环稳定性和耐久性也优于Pt/C.DFT计算结果表明,PtPdRhRuCu/C较好的HER性能和稳定性归因于高熵合金的协同效应,多金属成分提供了多样的活性位点,优化了HER反应路径,特别是在Volmer步骤中降低了水裂解的反应能垒.PtPdRhRuCu/C上的HER过程遵循Volmer-Tafel机理,水分子优先吸附在Ru位点,促进HO-H键的解离,解离出的质子迁移到Pt上,而OH通过Ru和Rh的桥接作用而稳定,最终在Cu上释放H2.综上,本文展示了高熵合金在HER中较好的性能,并通过详细的表征深入理解了其构-效关系.研究成果为高熵合金催化剂的合理设计和应用提供理论支持,为未来高效、耐久和低成本的绿色制氢技术提供重要的科学依据和技术支持.
文摘采用共沉淀法制备了三元材料LiNi0.4Co0.2Mn0.4O2,掺杂不同比例铷进行改性,对其进行了结构表征,考察了其电化学性能.结果表明,Li0.97Rb0.03Ni0.4Co0.2Mn0.4O2样品的结晶度较好,铷掺杂起到了稳定三元材料晶体结构的作用,有效改善了材料的电化学性能,5C倍率下放电比容量达130 m A×h/g.
文摘累托石是由二八面体的云母层与蒙托石层交替堆叠而成(1:1)的规则间层黏土矿物,是我国特有的矿种。目前的累托石开发中存在产品价廉、附加值低等问题,如应用于建筑材料等。与此同时,锂电池工业的快速发展亟需开发高容量的硅基负极材料。本文利用累托石特殊的层状结构和Si-Al交替分布的特征,采用镁热技术实现了从累托石到片状多孔硅的转化。通过碳包覆制备的硅碳复合材料可逆容量可达1300 m Ah·g^(–1),同时具有良好的循环稳定性和倍率特性。证实利用累托石制备高性能硅基锂电池负极材料是可行的,为累托石的高值化综合利用提供候选途径。