近年来,随着基于位置的社交网络(Location-Based Social Network, LBSN)不断发展,POI序列推荐逐渐成为近年来研究的热点问题.现有的POI序列推荐方法仅仅按照时间的先后顺序建模用户历史签到序列,默认用户POI轨迹中连续POI之间具有相等...近年来,随着基于位置的社交网络(Location-Based Social Network, LBSN)不断发展,POI序列推荐逐渐成为近年来研究的热点问题.现有的POI序列推荐方法仅仅按照时间的先后顺序建模用户历史签到序列,默认用户POI轨迹中连续POI之间具有相等的时间间隔,忽略了用户签到记录之间的时间间隔影响.另外,POI之间的地理距离以及语义信息也是影响推荐准确性的重要因素.基于此,本文提出自注意力下时空-语义相融合的POI序列推荐模型(POI sequence recommendation model based on the integration of spatiotemporal and semantics under self-attention, SA-TDS-PRec).首先,根据用户的实际签到时间建模POI轨迹.其次,融合POI绝对位置、时空间隔以及语义相关信息.最后利用自注意力机制捕捉用户动态偏好的演化,从而提高POI推荐的准确性.在公开数据集Gowalla和Yelp上进行可扩展实验.结果表明,该模型优于目前主流的基准模型,有效提升推荐结果准确性.展开更多
针对时变信道环境下传统信道估计方法性能受限,其他基于深度学习的信道估计方法估计精度低或复杂度高的问题,提出一种基于长短期记忆结构的信道估计网络,由双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络和多层感知...针对时变信道环境下传统信道估计方法性能受限,其他基于深度学习的信道估计方法估计精度低或复杂度高的问题,提出一种基于长短期记忆结构的信道估计网络,由双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络和多层感知器(multilayer perceptron,MLP)网络组成,即BiLSTM-MLP.首先,利用BiLSTM网络来学习信道的时变特性;然后,利用MLP网络进行去噪并重构信道估计.仿真结果表明,所提出的信道估计方法与传统方法相比,性能提升明显,与同类型的基于深度学习的估计方法相比,复杂度较低且性能更优.此外,所提方法还具有对不同导频密度的鲁棒性.展开更多
为提升欠定盲源分离问题中混合矩阵的估计精度,在噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的基础上,提出一种自适应确定输入参数的DBSCAN算法(adaptive DBSCAN,A-DBSCAN...为提升欠定盲源分离问题中混合矩阵的估计精度,在噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的基础上,提出一种自适应确定输入参数的DBSCAN算法(adaptive DBSCAN,A-DBSCAN)用于混合矩阵估计。针对DBSCAN算法邻域半径(Eps)及邻域点数(MinPts)依赖人为设定的问题,首先利用曲线拟合方法得出Eps,然后通过分析聚类输出类别数与噪声点数关系确定MinPts,并将其与混合矩阵估计模型相结合,最后通过最短路径算法实现源信号恢复。实验结果表明,提出的算法在估计混合矩阵和恢复源信号时,相关性能与对比算法相较均有明显提升。展开更多
文摘近年来,随着基于位置的社交网络(Location-Based Social Network, LBSN)不断发展,POI序列推荐逐渐成为近年来研究的热点问题.现有的POI序列推荐方法仅仅按照时间的先后顺序建模用户历史签到序列,默认用户POI轨迹中连续POI之间具有相等的时间间隔,忽略了用户签到记录之间的时间间隔影响.另外,POI之间的地理距离以及语义信息也是影响推荐准确性的重要因素.基于此,本文提出自注意力下时空-语义相融合的POI序列推荐模型(POI sequence recommendation model based on the integration of spatiotemporal and semantics under self-attention, SA-TDS-PRec).首先,根据用户的实际签到时间建模POI轨迹.其次,融合POI绝对位置、时空间隔以及语义相关信息.最后利用自注意力机制捕捉用户动态偏好的演化,从而提高POI推荐的准确性.在公开数据集Gowalla和Yelp上进行可扩展实验.结果表明,该模型优于目前主流的基准模型,有效提升推荐结果准确性.
文摘针对时变信道环境下传统信道估计方法性能受限,其他基于深度学习的信道估计方法估计精度低或复杂度高的问题,提出一种基于长短期记忆结构的信道估计网络,由双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络和多层感知器(multilayer perceptron,MLP)网络组成,即BiLSTM-MLP.首先,利用BiLSTM网络来学习信道的时变特性;然后,利用MLP网络进行去噪并重构信道估计.仿真结果表明,所提出的信道估计方法与传统方法相比,性能提升明显,与同类型的基于深度学习的估计方法相比,复杂度较低且性能更优.此外,所提方法还具有对不同导频密度的鲁棒性.
文摘为提升欠定盲源分离问题中混合矩阵的估计精度,在噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的基础上,提出一种自适应确定输入参数的DBSCAN算法(adaptive DBSCAN,A-DBSCAN)用于混合矩阵估计。针对DBSCAN算法邻域半径(Eps)及邻域点数(MinPts)依赖人为设定的问题,首先利用曲线拟合方法得出Eps,然后通过分析聚类输出类别数与噪声点数关系确定MinPts,并将其与混合矩阵估计模型相结合,最后通过最短路径算法实现源信号恢复。实验结果表明,提出的算法在估计混合矩阵和恢复源信号时,相关性能与对比算法相较均有明显提升。