期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
复合河道砂体劈分及隔夹层研究--以大庆油田北一区断东葡Ⅰ2小层为例 被引量:10
1
作者 杜微 马世忠 范广娟 《科学技术与工程》 2011年第16期3637-3640,3649,共5页
目前大庆油田已进入高含水开发阶段,厚油层内剩余油的挖潜成为重要的研究内容。厚油层内隔夹层的存在使其内部非均质性更加复杂,进而严重影响剩余油的分布。以大庆油田北一区断东为研究区,研究厚砂劈分及隔夹层特征,为厚油层内剩余油的... 目前大庆油田已进入高含水开发阶段,厚油层内剩余油的挖潜成为重要的研究内容。厚油层内隔夹层的存在使其内部非均质性更加复杂,进而严重影响剩余油的分布。以大庆油田北一区断东为研究区,研究厚砂劈分及隔夹层特征,为厚油层内剩余油的挖潜提供可靠的依据。首先利用研究区目的层的沉积特征和测井资料确定了复合砂体的可分性,其次确定不同期次河道砂体间沉积的隔夹层为复合砂体的劈分依据,最后根据成因和岩性将隔夹层划分为泥质夹层、钙质夹层和物性夹层三种类型。将复合砂体劈分与隔夹层结合研究。 展开更多
关键词 大庆油田 复合砂体 劈分 隔夹层
下载PDF
Seismic velocity inversion based on CNN-LSTM fusion deep neural network 被引量:6
2
作者 Cao Wei Guo Xue-Bao +4 位作者 Tian Feng Shi Ying Wang Wei-Hong Sun Hong-Ri Ke Xuan 《Applied Geophysics》 SCIE CSCD 2021年第4期499-514,593,共17页
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-mi... Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method. 展开更多
关键词 Velocity inversion CNN-LSTM fusion deep neural network weight initialization training strategy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部