期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ARIAM-GARCH深度学习的股价预测与决策
1
作者 刘祺 施三支 +1 位作者 娄磊 刘璐 《长春理工大学学报(自然科学版)》 2024年第1期119-130,共12页
对于绝大多数股民而言,大盘股具有投入成本高、损失大、资金流转慢等特性,为使得股民减少损失,提高收益,通过针对于中小企业股,采用两阶段的方法对股价进行了预测,给出了一种最优投资组合决策方法。第一阶段先用ARIMA-GARCH模型进行建模... 对于绝大多数股民而言,大盘股具有投入成本高、损失大、资金流转慢等特性,为使得股民减少损失,提高收益,通过针对于中小企业股,采用两阶段的方法对股价进行了预测,给出了一种最优投资组合决策方法。第一阶段先用ARIMA-GARCH模型进行建模,提取每日收益率的波动率,再将波动率加入到原有数据集中,构建CNN-BiLSTM-AT深度神经网络模型进行预测,最后使用XGBoost算法对预测值进行修正。第二阶段在给定投资者的期望收益率的条件下,用Bayes方法进行投资组合,获取最优投资决策。实证研究表明,此方法对于选取的10只中小企业股有着较好的研究结果。 展开更多
关键词 股价预测 ARIMA-GARCH模型 CNN-BiLSTM-AT XGBoost算法 BAYES方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部