The effects of Zn addition on the microstructure and mechanical properties of Mg.10Gd.3Y.0.6Zr(wt.%)alloys in the as-cast,solution-treated,and peak-aged conditions were investigated.Experimental results reveal that th...The effects of Zn addition on the microstructure and mechanical properties of Mg.10Gd.3Y.0.6Zr(wt.%)alloys in the as-cast,solution-treated,and peak-aged conditions were investigated.Experimental results reveal that the microstructure of the as-cast alloy without Zn consists ofα-Mg and Mg24(Gd,Y)5 phases,and the alloy with 0.5 wt.%Zn consists ofα-Mg,(Mg,Zn)3(Gd,Y)and Mg24(Gd,Y,Zn)5 phases.With the addition of Zn increasing to 1 wt.%,the Mg24(Gd,Y,Zn)5 phase disappears and some needle-like stacking faults distribute along the grain boundaries.Moreover,the 18R long-period stacking ordered(LPSO)phase is observed in the as-cast alloy with 2 wt.%Zn.After solution treatment,the Mg24(Gd,Y)5 and Mg24(Gd,Y,Zn)5 eutectic phases are completely dissolved,and the(Mg,Zn)3(Gd,Y)phase,needle-like stacking faults and 18R LPSO phase all transform into 14H LPSO phase.Both the suitable volume fraction of 14H LPSO phases and the fine ellipsoidal-shapedβ′phases make the peak-aged alloy with 0.5 wt.%Zn exhibit excellent comprehensive mechanical properties and the UTS,YS and elongation are 338 MPa,201 MPa and 6.8%,respectively.展开更多
In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculat...In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible.展开更多
In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZ...In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZVD fuze of Switzerland oerlikon 2ZLa/353 35 mm double barrel self-propelled antiaircraft artillery as an example, based on the aerodynamics heating theory, the calculation of theory model and simulation of projectile head stagnation point temperature were done in initial stage of sim-plified exterior ballistic from engineering viewpoint when the initial projectile velocity was 1 175 m/s and the error was ±15 m/s. The melting point of fusible alloy in the safe distance was obtained by analyzing the temperature of projectile head stagnation point at corresponding projectile velocity. The simulated results indicate that the melting point of fusible alloy de-rived by theoretical calculation is identical with the result of simulation at the velocity range of 1 160 to 1 190 m/s. So the aero- thermodynamics model can be applied to design the fusible alloy fuze of corresponding melting point based on the requirement of safe distance. This method can be taken as the reference in studying the thermodynamic question of projectile flying at high speed.展开更多
In recent years,with the extensive applications of high performance computer and the rapid development of the attitude control of the spacecraft,quaternion theory has been widely used.Compared with Euler angles,quater...In recent years,with the extensive applications of high performance computer and the rapid development of the attitude control of the spacecraft,quaternion theory has been widely used.Compared with Euler angles,quaternion not only is simple calculation,but also can avoid the singularity problem of Euler angles,therefore it is widely used in the attitude control of spacecraft.In this paper,Simulink simulation technology is used to establish a rigid attitude simulation model with quaternion method and virtual reality scene by virtual reality modeling language(V RM L)is used to achieve attitude motion visualizationThe simulation results show that the Simulink simulation model can accurately reflect the attitude motion of the rigid body,which is valuable for the research of the attitude control of the spacecraft.展开更多
基金Projects(51774254,51774253,51701187,U1610123,51674226,51574207,51574206)supported by the National Natural Science Foundation of ChinaProject(MC2016-06)supported by the Science and Technology Major Project of Shanxi Province,ChinaProject(201601D021062)supported by Shanxi Province Science Foundation for Youths,China
文摘The effects of Zn addition on the microstructure and mechanical properties of Mg.10Gd.3Y.0.6Zr(wt.%)alloys in the as-cast,solution-treated,and peak-aged conditions were investigated.Experimental results reveal that the microstructure of the as-cast alloy without Zn consists ofα-Mg and Mg24(Gd,Y)5 phases,and the alloy with 0.5 wt.%Zn consists ofα-Mg,(Mg,Zn)3(Gd,Y)and Mg24(Gd,Y,Zn)5 phases.With the addition of Zn increasing to 1 wt.%,the Mg24(Gd,Y,Zn)5 phase disappears and some needle-like stacking faults distribute along the grain boundaries.Moreover,the 18R long-period stacking ordered(LPSO)phase is observed in the as-cast alloy with 2 wt.%Zn.After solution treatment,the Mg24(Gd,Y)5 and Mg24(Gd,Y,Zn)5 eutectic phases are completely dissolved,and the(Mg,Zn)3(Gd,Y)phase,needle-like stacking faults and 18R LPSO phase all transform into 14H LPSO phase.Both the suitable volume fraction of 14H LPSO phases and the fine ellipsoidal-shapedβ′phases make the peak-aged alloy with 0.5 wt.%Zn exhibit excellent comprehensive mechanical properties and the UTS,YS and elongation are 338 MPa,201 MPa and 6.8%,respectively.
文摘In order to improve the accuracy of target intent recognition,a recognition method based on XGBoost(eXtreme Gradient Boosting)decision tree is proposed.This paper adopts relevant data and program of python to calculate the probability of tactical intention.Then the sequence intention probability is obtained by applying Dempster-Shafer rule of combination.To verify the accuracy of recognition results,we compare the experimental results of this paper with the results in the literatures.The experiment shows that the probability of tactical intention recognition through this method is improved,so this method is feasible.
文摘In order to ensure the ballistic safety of fusible alloy fuze at reliable delay arming, melting point of fusible alloy needs to be calculated based on projectile velocity at safe time and distance. Taking shrapnel KZVD fuze of Switzerland oerlikon 2ZLa/353 35 mm double barrel self-propelled antiaircraft artillery as an example, based on the aerodynamics heating theory, the calculation of theory model and simulation of projectile head stagnation point temperature were done in initial stage of sim-plified exterior ballistic from engineering viewpoint when the initial projectile velocity was 1 175 m/s and the error was ±15 m/s. The melting point of fusible alloy in the safe distance was obtained by analyzing the temperature of projectile head stagnation point at corresponding projectile velocity. The simulated results indicate that the melting point of fusible alloy de-rived by theoretical calculation is identical with the result of simulation at the velocity range of 1 160 to 1 190 m/s. So the aero- thermodynamics model can be applied to design the fusible alloy fuze of corresponding melting point based on the requirement of safe distance. This method can be taken as the reference in studying the thermodynamic question of projectile flying at high speed.
基金Natural Science Foundation of Shanxi Province(No.201601D102002)
文摘In recent years,with the extensive applications of high performance computer and the rapid development of the attitude control of the spacecraft,quaternion theory has been widely used.Compared with Euler angles,quaternion not only is simple calculation,but also can avoid the singularity problem of Euler angles,therefore it is widely used in the attitude control of spacecraft.In this paper,Simulink simulation technology is used to establish a rigid attitude simulation model with quaternion method and virtual reality scene by virtual reality modeling language(V RM L)is used to achieve attitude motion visualizationThe simulation results show that the Simulink simulation model can accurately reflect the attitude motion of the rigid body,which is valuable for the research of the attitude control of the spacecraft.