期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
大数据下基于异步累积更新的高效P-Rank计算方法
被引量:
4
1
作者
王旭丛
李翠平
陈红
《软件学报》
EI
CSCD
北大核心
2014年第9期2136-2148,共13页
P-Rank是SimRank的扩展形式,也是一种相似度度量方法,被用来计算网络中任意两个结点的相似性.不同于SimRank只考虑结点的入度信息,P-Rank还加入了结点的出度信息,从而更加客观准确地评价结点间的相似程度.随着大数据时代的到来,P-Rank...
P-Rank是SimRank的扩展形式,也是一种相似度度量方法,被用来计算网络中任意两个结点的相似性.不同于SimRank只考虑结点的入度信息,P-Rank还加入了结点的出度信息,从而更加客观准确地评价结点间的相似程度.随着大数据时代的到来,P-Rank需要处理的数据日益增大.使用MapReduce等分布式模型实现大规模P-Rank迭代计算的方法,本质上是一种同步迭代方法,不可避免地具有同步迭代方法的缺点:迭代时间(尤其是迭代过程中处理器等待的时间)长,计算速度慢,因此效率低下.为了解决这一问题,采用了一种迭代计算方法——异步累积更新算法.这个算法实现了异步计算,减少了计算过程处理器结点的等待时间,提高了计算速度,节省了时间开销.从异步的角度实现了P-Rank算法,将异步累积更新算法应用在了P-Rank上,并进行了对比实验.实验结果表明该算法有效地提高了计算收敛速度.
展开更多
关键词
异步累积更新
大数据
相似度
大规模计算
下载PDF
职称材料
题名
大数据下基于异步累积更新的高效P-Rank计算方法
被引量:
4
1
作者
王旭丛
李翠平
陈红
机构
中国人民大学
信息
学院
计算机系
中国人民大学信息学院数据仓库与商务智能实验室
出处
《软件学报》
EI
CSCD
北大核心
2014年第9期2136-2148,共13页
基金
国家自然科学基金(61272137
61033010
+4 种基金
61202114)
国家高技术研究发展计划(863)(2014AA015204)
国家基础研究发展计划(973)(2012CB316205)
国家社会科学基金(12&ZD220)
中国人民大学科学研究基金(中央高校基本科研业务费专项资金资助)(10XNI018)
文摘
P-Rank是SimRank的扩展形式,也是一种相似度度量方法,被用来计算网络中任意两个结点的相似性.不同于SimRank只考虑结点的入度信息,P-Rank还加入了结点的出度信息,从而更加客观准确地评价结点间的相似程度.随着大数据时代的到来,P-Rank需要处理的数据日益增大.使用MapReduce等分布式模型实现大规模P-Rank迭代计算的方法,本质上是一种同步迭代方法,不可避免地具有同步迭代方法的缺点:迭代时间(尤其是迭代过程中处理器等待的时间)长,计算速度慢,因此效率低下.为了解决这一问题,采用了一种迭代计算方法——异步累积更新算法.这个算法实现了异步计算,减少了计算过程处理器结点的等待时间,提高了计算速度,节省了时间开销.从异步的角度实现了P-Rank算法,将异步累积更新算法应用在了P-Rank上,并进行了对比实验.实验结果表明该算法有效地提高了计算收敛速度.
关键词
异步累积更新
大数据
相似度
大规模计算
Keywords
P-Rank
asynchronous accumulative update
big data
similarity
P-Rank
large-scale computation
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
大数据下基于异步累积更新的高效P-Rank计算方法
王旭丛
李翠平
陈红
《软件学报》
EI
CSCD
北大核心
2014
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部