目的研究Si、C单元素掺杂及其共同掺杂Ti Al N涂层对涂层性能的影响。方法基于阴极电弧+辉光放电技术,在SUS304不锈钢基体及硬质合金刀具上分别制备nc-(Ti,Al)N、nc-(Ti,Al)N/a-SiN_x、nc-TiAlCN及nc-TiAlCN/a-SiN_x/a-C纳米复合薄膜,通...目的研究Si、C单元素掺杂及其共同掺杂Ti Al N涂层对涂层性能的影响。方法基于阴极电弧+辉光放电技术,在SUS304不锈钢基体及硬质合金刀具上分别制备nc-(Ti,Al)N、nc-(Ti,Al)N/a-SiN_x、nc-TiAlCN及nc-TiAlCN/a-SiN_x/a-C纳米复合薄膜,通过SEM观察涂层的微观组织形貌,并借助EDS表征涂层的元素成分,用XRD分析涂层的物相构成,探究C、Si元素对涂层生长的影响。采用纳米硬度仪测试涂层的硬度,采用二维轮廓仪及三维形貌仪表征涂层的表面粗糙度及表面形貌,通过滑动摩擦磨损试验测定涂层的耐磨性,用纳米划痕仪表征涂层的摩擦系数及涂层与基体的结合强度,用铣削实验表征涂层的切削性能。结果该技术制备的Ti Al N涂层,内部晶相结构复杂,硬度为29.57 GPa,主要归因于Ti_(2)AlN、Ti_(2)N等硬质相及Ti N_(0.3)相的形成降低了涂层的晶格常数。此为首次报道通过物理气相沉积方法制备含Ti N_(0.3)相的涂层。Ti Al Si N涂层的硬度最高,为37.69 GPa,且耐磨性最好,主要原因是Si的添加起到了细晶强化和晶界强化的作用。C掺杂Ti Al N使涂层析出更多非晶相,涂层硬度降低。C、Si元素共同掺杂,使得nc-Ti Al CN/a-Si N_x/a-C涂层表现出较低的摩擦系数及表面粗糙度,但与基体的结合性能最差,nc-(Ti,Al)N/a-SiN_x薄膜的结合强度最好。结论涂层均提高了基体表面的显微硬度,Si、C元素的掺杂可使涂层的某些性能得以大幅提升,但在实际应用中,还需根据应用需求选择合适的涂层。展开更多
文摘目的研究Si、C单元素掺杂及其共同掺杂Ti Al N涂层对涂层性能的影响。方法基于阴极电弧+辉光放电技术,在SUS304不锈钢基体及硬质合金刀具上分别制备nc-(Ti,Al)N、nc-(Ti,Al)N/a-SiN_x、nc-TiAlCN及nc-TiAlCN/a-SiN_x/a-C纳米复合薄膜,通过SEM观察涂层的微观组织形貌,并借助EDS表征涂层的元素成分,用XRD分析涂层的物相构成,探究C、Si元素对涂层生长的影响。采用纳米硬度仪测试涂层的硬度,采用二维轮廓仪及三维形貌仪表征涂层的表面粗糙度及表面形貌,通过滑动摩擦磨损试验测定涂层的耐磨性,用纳米划痕仪表征涂层的摩擦系数及涂层与基体的结合强度,用铣削实验表征涂层的切削性能。结果该技术制备的Ti Al N涂层,内部晶相结构复杂,硬度为29.57 GPa,主要归因于Ti_(2)AlN、Ti_(2)N等硬质相及Ti N_(0.3)相的形成降低了涂层的晶格常数。此为首次报道通过物理气相沉积方法制备含Ti N_(0.3)相的涂层。Ti Al Si N涂层的硬度最高,为37.69 GPa,且耐磨性最好,主要原因是Si的添加起到了细晶强化和晶界强化的作用。C掺杂Ti Al N使涂层析出更多非晶相,涂层硬度降低。C、Si元素共同掺杂,使得nc-Ti Al CN/a-Si N_x/a-C涂层表现出较低的摩擦系数及表面粗糙度,但与基体的结合性能最差,nc-(Ti,Al)N/a-SiN_x薄膜的结合强度最好。结论涂层均提高了基体表面的显微硬度,Si、C元素的掺杂可使涂层的某些性能得以大幅提升,但在实际应用中,还需根据应用需求选择合适的涂层。