为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时...为及时辨识集约化水产养殖水质变化趋势、动态调控水质,确保无应激环境下健康养殖,该文提出了基于时序列相似数据的最小二乘支持向量回归机(least squares support vector regression,LSSVR)水质溶解氧在线预测模型。采用特征点分段时间弯曲距离(feature points segmented time warping distance,FPSTWD)算法对在线采集的时间序列数据进行分段与相似度计算,以缩减规模的子序列数据集对LSSVR模型进行快速训练优化,实现了多个LSSVR子模型在线建模,将预测数据序列与LSSVR子模型的相似度匹配,自适应地选取最佳的子模型作为在线预测模型。应用该模型对集约化河蟹福利养殖水质参数溶解氧浓度进行在线预测,模型评价指标中最大相对误差、平均绝对百分比误差、相对均方根误差和运行时间分别为4.76%、8.18%、5.23%、8.32 s。研究结果表明,与其他预测方法相比,该模型具有较好的综合预测性能,能够满足河蟹福利养殖水质在线预测的实际需求,并为集约化水产养殖水质精准调控提供研究基础。展开更多
为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimizat...为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimization weighted least squares support vector regression,APSO-WLSSVR)的水质预测模型。根据样本对模型重要性不同为各样本赋予不同权重,建立了加权最小二乘支持向量回归机(weighted least squaressupport vector regression,WLSSVR),实现对样本数据"重近轻远"的优化选择,避免标准LSSVR算法因没有考虑样本重要性差异致使预测精度低的问题;采用自适应粒子群优化算法对模型参数组合进行优化选择,克服了标准LSSVR算法因试凑法获取参数的盲目性和人为因素的影响。为验证该模型的性能,对江苏省宜兴市集约化河蟹养殖水质进行预测,并与其他预测方法对比分析,结果表明该模型预测精度明显提高,还具有较好的鲁棒性和泛化能力,能够满足集约化水产养殖水质管理的实际需要。展开更多
文摘为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimization weighted least squares support vector regression,APSO-WLSSVR)的水质预测模型。根据样本对模型重要性不同为各样本赋予不同权重,建立了加权最小二乘支持向量回归机(weighted least squaressupport vector regression,WLSSVR),实现对样本数据"重近轻远"的优化选择,避免标准LSSVR算法因没有考虑样本重要性差异致使预测精度低的问题;采用自适应粒子群优化算法对模型参数组合进行优化选择,克服了标准LSSVR算法因试凑法获取参数的盲目性和人为因素的影响。为验证该模型的性能,对江苏省宜兴市集约化河蟹养殖水质进行预测,并与其他预测方法对比分析,结果表明该模型预测精度明显提高,还具有较好的鲁棒性和泛化能力,能够满足集约化水产养殖水质管理的实际需要。