生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为...生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。展开更多
针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于...针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。展开更多
文摘生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术。以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集。采集牛肉新鲜切口处400~1170nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率。经过多元散射校正(multiplicative scatter correction,MSC)、变量标准化(standard normalized variate,SNV)和直接正交信号校正(direct orthogonal signal correction,DOSC)等方法预处理,在400~1170nm范围内分别建立多元线性回归(multiple linear regression,MLR)模型、主成分回归(principal component Regression,PCR)模型和偏最小二乘回归(partial least squares regression,PLSR)模型。结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054。结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考。
文摘针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。