期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
加强分子生物学研究,促进苹果产业持续发展
1
作者 丛佩华 张彩霞 +1 位作者 韩晓蕾 张利义 《中国农业科学》 CAS CSCD 北大核心 2019年第23期4320-4321,共2页
随着高质量苹果多品种基因组全序列及重测序数据不断涌现,其对苹果乃至蔷薇科作物分子育种产生十分重要的影响[1-5],也昭示苹果分子生物学研究步入后基因组时代。如何基于基因组所提供的信息,发展和利用新的技术手段,如最新的基因编辑技... 随着高质量苹果多品种基因组全序列及重测序数据不断涌现,其对苹果乃至蔷薇科作物分子育种产生十分重要的影响[1-5],也昭示苹果分子生物学研究步入后基因组时代。如何基于基因组所提供的信息,发展和利用新的技术手段,如最新的基因编辑技术,在全基因组水平上全面分析基因的功能至关重要[6]。 展开更多
关键词 分子生物学研究 基因编辑 CRISPR 启动子 非生物胁迫 全基因组 持续发展
下载PDF
苹果LysM基因家族的生物信息学及表达分析 被引量:11
2
作者 周喆 张彩霞 +4 位作者 张利义 王强 李武兴 田义 丛佩华 《中国农业科学》 CAS CSCD 北大核心 2014年第13期2602-2612,共11页
【目的】在苹果全基因组中鉴定LysM,通过基因聚类分析、染色体定位、结构分析以及组织表达分析,为苹果LysM的功能研究和利用奠定基础。【方法】利用已公布的苹果基因组数据库GDR和FEM-IASMA,鉴定苹果LysM基因家族成员,并对其进行编号。M... 【目的】在苹果全基因组中鉴定LysM,通过基因聚类分析、染色体定位、结构分析以及组织表达分析,为苹果LysM的功能研究和利用奠定基础。【方法】利用已公布的苹果基因组数据库GDR和FEM-IASMA,鉴定苹果LysM基因家族成员,并对其进行编号。MdLysM蛋白氨基酸序列的基本信息通过ExPASy Proteomics Server进行预测,亚细胞定位的预测利用WoLF PSORT进行。采用MEGA5软件构建了进化树。应用Plaza程序绘制基因结构,染色体定位信息取自GMDO,鉴定出的39个基因的染色体定位作图使用MapInspector完成;另外,通过实时荧光定量RT-PCR对各基因的组织表达特性进行分析,差异显著性分析通过SPSS完成。【结果】系统地鉴定了39个苹果LysM家族成员。这39个MdLysM蛋白包含241至1 119个不等的氨基酸残基,等电点分布在4.70—9.60范围内。亚细胞定位结果表明,苹果LysM蛋白在细胞核、细胞质、叶绿体、液泡、胞外基质中均有分布。根据聚类分析可将这些基因分为A、B和C 3组,且A组又可进一步被分为Ⅰ、Ⅱ和Ⅲ3个亚族,说明它们的功能可能已经发生了分化。MdLysM蛋白结构域的预测结果及基因结构分析结果均与进化树聚类结果吻合。染色体定位表明,MdLysM分布在苹果17条染色体中的13条上,且此家族的基因在13条染色体上的分布为非均匀的,其中以4号染色体上分布最多,达到了9个,而1、5、7和8号染色体上则未见分布。在苹果LysM家族中鉴定出了10对和1组旁系同源基因,MdLysM基因间存在串联重复和片段重复,它们是苹果LysM家族扩张的主要动力。对39个基因在根、茎、叶、花、果5个组织器官中的实时荧光定量RT-PCR结果显示,5个器官中均能检测到MdLysM的表达,这些基因的组织表达模式具有多样性,表明它们在不同组织中可能扮演不同的角色。【结论】苹果LysM基因家族拥有39个成员,进化上可分为3组,基因结构的复杂程度与进化树聚类存在联系。39个基因分布于13条染色体上,存在重复事件。这些信息为今后苹果LysM基因家族的功能研究奠定了基础。 展开更多
关键词 苹果 LysM基因家族 系统发育分析 表达分析
下载PDF
苹果U6启动子的克隆及功能分析 被引量:11
3
作者 卞书迅 韩晓蕾 +4 位作者 袁高鹏 张利义 田义 张彩霞 丛佩华 《中国农业科学》 CAS CSCD 北大核心 2019年第23期4364-4373,共10页
【目的】U6启动子是CRISPR/Cas9基因组编辑载体系统中驱动sgRNA转录的重要元件,其可能存在物种特异性因子,且长度不同转录活性存在差异。迄今在苹果(Malus×domestica)上对U6启动子尚缺乏研究。因此,筛选出转录活性高且片段大小合... 【目的】U6启动子是CRISPR/Cas9基因组编辑载体系统中驱动sgRNA转录的重要元件,其可能存在物种特异性因子,且长度不同转录活性存在差异。迄今在苹果(Malus×domestica)上对U6启动子尚缺乏研究。因此,筛选出转录活性高且片段大小合适的苹果U6启动子,可以优化苹果CRISPR/Cas9基因编辑体系。【方法】利用软件DNAMAN以及启动子元件在线分析网站PLACE和plant CARE对苹果U6启动子进行比对分析;克隆并构建U6启动子驱动萤火虫荧光素酶基因(Firefly luciferase,LUC)的融合表达载体,利用农杆菌介导的瞬时转化法分别转染苹果愈伤组织和本氏烟草(Nicotiana benthamiana)叶片;通过检测荧光素酶活性对各U6启动子进行转录活性比较。【结果】苹果基因组中共检索到6条U6 snRNA(E-value<3e^-40),分别位于第6、7、9、10、15和17号染色体上,取5′端27 bp snRNA及其上游1 500 bp作为候选U6启动子。序列比对结果显示,苹果U6启动子与拟南芥相同,均具有两个保守的元件,包括上游序列元件(Upstream sequence element,USE)和TATA-Like box。瞬时转化后荧光素酶活性检测结果显示,10号染色体上的U6启动子转录活性最高,10号染色体上5′端截短的U6启动子(长度分别为1 500、959、275和116 bp)中275 bp的启动子活性最强。另外,在苹果愈伤组织中,苹果U6启动子的转录活性要显著高于拟南芥U6启动子。【结论】从苹果基因组克隆6条U6启动子,并筛选出一条转录活性高且片段长度较短的U6启动子。 展开更多
关键词 苹果 U6启动子 荧光素酶 本氏烟草 愈伤组织
下载PDF
苹果LIM基因家族生物信息学及表达分析 被引量:7
4
作者 袁高鹏 韩晓蕾 +4 位作者 卞书迅 张利义 田义 张彩霞 丛佩华 《中国农业科学》 CAS CSCD 北大核心 2019年第23期4322-4332,共11页
【目的】在苹果全基因组中鉴定LIM,通过分析启动子作用元件、保守结构域、基因聚类、基因结构、染色体定位以及组织表达模式,为研究和利用苹果LIM奠定基础。【方法】利用苹果基因组数据库GDR和PLAZA,获得苹果LIM家族成员并进行编号。苹... 【目的】在苹果全基因组中鉴定LIM,通过分析启动子作用元件、保守结构域、基因聚类、基因结构、染色体定位以及组织表达模式,为研究和利用苹果LIM奠定基础。【方法】利用苹果基因组数据库GDR和PLAZA,获得苹果LIM家族成员并进行编号。苹果LIM蛋白氨基酸序列的基本信息通过ExPASy Proteomics Server进行预测,利用Cell-PLoc进行亚细胞定位预测,利用CD-Search Tool进行LIM结构域分析,采用MEGA7软件构建进化树,采用GSDS绘制基因结构,并利用TBtools软件对鉴定得到的MdLIM进行染色体定位,通过实时荧光定量RT-PCR对MdLIM的组织表达进行分析,并利用SPSS 18.0软件分析差异显著性。【结果】共鉴定得到11个苹果LIM家族成员,这些MdLIM蛋白包含96-222个不等的氨基酸残基,等电点分布在6.14-9.01。亚细胞定位结果显示,MdLIM蛋白在细胞核中均有分布。启动子作用元件分析表明,11个MdLIM启动子上分布有响应激素、环境适应性和逆境诱导的元件。蛋白保守结构域分析表明,11个MdLIM蛋白中除MdLIM8具有单LIM结构域外,其余10个均具有双LIM结构域。根据聚类分析结果可将MdLIM分为4组。染色体定位结果显示,MdLIM分布在苹果17条染色体中的7条,且MdLIM在7条染色体上的分布不均匀。花、叶、果皮和茎中的实时荧光定量RT-PCR结果显示,4个组织中均能检测到MdLIM的表达,且表达量具有一定差异。【结论】苹果LIM基因家族包括11个成员,进化上可分为4组,11个基因分布于7条染色体上,在不同组织中的表达具有多样性和特异性。 展开更多
关键词 苹果 全基因组 LIM家族 生物信息学 表达分析
下载PDF
苹果叶片不定芽再生过程的差异表达基因鉴定与分析 被引量:1
5
作者 刘锴 何闪闪 +7 位作者 张彩霞 张利义 卞书迅 袁高鹏 李武兴 康立群 丛佩华 韩晓蕾 《中国农业科学》 CAS CSCD 北大核心 2021年第16期3488-3501,共14页
【目的】筛选分析‘GL-3’苹果叶片不定芽再生过程中的差异表达基因(differentially expressed gene,DEG),进一步解析苹果叶片不定芽再生的潜在分子机制,为提高苹果的遗传转化效率提供理论参考。【方法】‘GL-3’苹果继代组培苗叶片外... 【目的】筛选分析‘GL-3’苹果叶片不定芽再生过程中的差异表达基因(differentially expressed gene,DEG),进一步解析苹果叶片不定芽再生的潜在分子机制,为提高苹果的遗传转化效率提供理论参考。【方法】‘GL-3’苹果继代组培苗叶片外植体接种在再生培养基上,分别于0、3、7、14和21 d后取样并提取RNA,构建mRNA文库后采用Illumina Nova seq平台进行测序。筛选出各时间点的DEGs,根据GO(Gene ontology)和KEGG(Kyoto encyclopedia of genes and genomes)注释结果以及官方分类,使用R软件中的phyper函数对筛选到的DEGs进行GO和KEGG富集分析;利用BLAST软件进行基因比对注释;重点分析植物再生相关的激素、酶、转录因子、多胺等DEGs;采用qRT-PCR对DEGs进行定量验证。【结果】再生培养基上培养3、7、14和21 d的苹果叶片外植体与对照组相比,分别筛选到5250、4937、6852、6493个DEGs,4个时间点共有的DEGs有3027个。DEGs的GO功能富集显示,4个时间点筛选到的共有DEGs中上调表达的DEGs主要与氧化还原过程、细胞外围、蛋白激酶活性和有机环化合物结合等功能有关;下调表达的DEGs主要与单细胞代谢过程、钙离子结合、光合膜和类囊体部分等功能有关。DEGs的KEGG通路富集分析显示,4个时间点筛选到的共有DEGs中上调表达的DEGs主要富集在磷酸戊糖途径、植物激素信号转导、植物-病原菌相互作用和内质网蛋白质加工等途径中;下调表达的DEGs主要富集在α-亚麻酸代谢、苯丙烷生物合成、碳代谢和光合作用等途径中。对与植物离体叶片再生相关的激素、酶、转录因子和多胺等相关DEGs的表达模式进行分析发现,这些DEGs大部分呈上调表达趋势。经qRT-PCR验证后,所检测基因的表达趋势与转录组测序结果一致。【结论】通过对苹果叶片不定芽再生过程中不同时间点的基因表达谱进行检测和对比分析,获得了大量与苹果叶片不定芽再生相关的基因,研究结果为深入探讨苹果离体叶片再生机理提供了理论依据。 展开更多
关键词 苹果 不定芽再生 RNA-SEQ 差异表达基因 影响因子
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部