期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于词性与词序的相关因子训练的word2vec改进模型 被引量:11
1
作者 潘博 于重重 +2 位作者 张青川 徐世璇 曹帅 《电子学报》 EI CAS CSCD 北大核心 2018年第8期1976-1982,共7页
词性是自然语言处理的基本要素,词语顺序包含了所传达的语义与语法信息,它们都是自然语言中的关键信息.在word embedding模型中如何有效地将两者结合起来,是目前研究的重点.本文提出的Structured word2vec on POS联合了词语顺序与词性... 词性是自然语言处理的基本要素,词语顺序包含了所传达的语义与语法信息,它们都是自然语言中的关键信息.在word embedding模型中如何有效地将两者结合起来,是目前研究的重点.本文提出的Structured word2vec on POS联合了词语顺序与词性两种信息,不仅使模型可以感知词语位置顺序,而且利用词性关联信息来建立上下文窗口内词语之间的固有句法关系.Structured word2vec on POS将词语按其位置顺序定向嵌入,对词向量和词性相关加权矩阵进行联合优化.实验通过词语类比、词相似性任务,证明了所提出的方法的有效性. 展开更多
关键词 WORD EMBEDDING 词性 相关权重 词序 word2vec
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部