利用超级计算机资源求解雷诺平均N-S方程(RANS),计算评估大量外形方案性能,在可接受的时间周期内完成民机飞发集成构型下机翼多目标优化设计。搭建了集成机翼CST参数化、复杂外形网格变形、快速CFD流场解算和自动后处理等关键环节,用遗...利用超级计算机资源求解雷诺平均N-S方程(RANS),计算评估大量外形方案性能,在可接受的时间周期内完成民机飞发集成构型下机翼多目标优化设计。搭建了集成机翼CST参数化、复杂外形网格变形、快速CFD流场解算和自动后处理等关键环节,用遗传算法全局寻优的优化系统。合理的流程设计使该系统可在"天河2号"超级计算机上同时对数百个方案实施计算评估。在并行计算、加速收敛等技术的综合运用下,使用包含800万单元的多块结构化网格,对NASA CRM (Common Research Model)机翼/机身/短舱/吊挂构型的计算分析可在15min内结束。在3点3目标优化案例中,用90个设计变量表达CRM机翼9个控制剖面的中弧线和扭转角,60h内完成了超过10000个外形方案的计算分析,遗传进化40代。与初始外形相比,PARETO前缘上选择的最优解的各设计点取得了2~10count(1count=阻力系数0.0001)的减阻效果。展开更多
文摘利用超级计算机资源求解雷诺平均N-S方程(RANS),计算评估大量外形方案性能,在可接受的时间周期内完成民机飞发集成构型下机翼多目标优化设计。搭建了集成机翼CST参数化、复杂外形网格变形、快速CFD流场解算和自动后处理等关键环节,用遗传算法全局寻优的优化系统。合理的流程设计使该系统可在"天河2号"超级计算机上同时对数百个方案实施计算评估。在并行计算、加速收敛等技术的综合运用下,使用包含800万单元的多块结构化网格,对NASA CRM (Common Research Model)机翼/机身/短舱/吊挂构型的计算分析可在15min内结束。在3点3目标优化案例中,用90个设计变量表达CRM机翼9个控制剖面的中弧线和扭转角,60h内完成了超过10000个外形方案的计算分析,遗传进化40代。与初始外形相比,PARETO前缘上选择的最优解的各设计点取得了2~10count(1count=阻力系数0.0001)的减阻效果。